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ABSTRACT
BACKGROUND: Impulse control is a critical aspect of cognitive functioning. Intuitively, whether an action is executed
prematurely depends on its associated reward, yet the link between value and impulsivity remains poorly understood.
Three frameworks for impulsivity offer contrasting views: impulsive behavior may be valuable because it is associated
with hidden internal reward (e.g., reduction of mental effort). Alternatively, it can emerge from exploration, which is
disadvantageous in the short term but can yield long-term benefits. Finally, impulsivity may reflect Pavlovian bias, an
inherent tendency that occurs even when its outcome is negative.
METHODS: To test these hypotheses, we trained 17 male mice to withhold licking while anticipating variable rewards.
We then measured and optogenetically manipulated dopamine release in the ventral striatum.
RESULTS: We found that higher reward magnitudes correlated with increased impulsivity. This behavior was well
explained by a Pavlovian bias model. Furthermore, we observed negative dopamine signals during premature licking,
suggesting that in this task, impulsivity is not merely an unsuccessful attempt at obtaining a reward. Rather, it is a
failure to overcome the urge to act prematurely despite knowledge of the negative consequences of such impulsive
actions.
CONCLUSIONS: Our findings underscore the integral role value plays in regulating impulsivity and suggest that the
dopaminergic system influences impulsivity through the mediation of value learning.

https://doi.org/10.1016/j.biopsych.2024.09.017
Impulsivity is a multifaceted cognitive construct (1). Among its
various forms, waiting impulsivity—failure to withhold an action
in the face of delay—has gained considerable attention as a
core symptom of a number of psychological disorders such as
drug addiction, gambling, and attention-deficit/hyperactivity
disorder (2).

Reinforcement learning (RL) provides a general framework
for value-based behaviors (3). RL algorithms typically converge
to a behavior that maximizes accumulated rewards, and
therefore, behaviors that seem detrimental, such as impul-
sivity, are a challenge to this framework. One possible inter-
pretation of impulsivity is that it does reflect maximization of
accumulated rewards, taking into account hidden, internal re-
wards or punishments. For example, withholding an action can
be associated with a punishment, such as mental effort (4). A
second interpretation is that impulsive behavior reflects
exploration, a crucial component of RL (5,6). Because actions
that initially seem disadvantageous may turn out to be bene-
ficial, occasionally choosing seemingly worse actions is
necessary for finding optimal strategies. This opens up the
possibility of interpreting impulsive decisions as components
of an exploratory strategy (7). Indeed, increased impulsivity has
been linked to heightened exploration, which was also sug-
gested to underlie attention-deficit/hyperactivity disorder (8).
Finally, impulsivity may be attributed to an asymmetry between
action and inaction, known as Pavlovian bias (9,10). Generally
speaking, it is easier to train an animal to act to obtain a reward
than to withhold action for the same goal (11–14).
N: 0006-3223
A key distinction between these explanations has to do with
the effect that value has on impulsivity: The contribution of
hidden costs and exploration to impulsivity is expected to
decrease as the value of being patient increases. By contrast,
a Pavlovian bias to act for reward is expected to increase with
reward magnitude.

At the neurobiological level, a considerable body of
research links midbrain dopamine neurons in the ventral
tegmental area (VTA) to RL (15–17). These neurons encode
reward prediction errors (RPEs), which are defined as the dif-
ference between received and predicted reward (3,18–20). One
of the major targets of these neurons is the ventral striatum
(VS) (which includes the nucleus accumbens), which, beyond
its importance to Pavlovian learning (21,22), is known to be a
key brain structure for controlling certain forms of impulsivity,
including waiting impulsivity (23–26).

In this study, our goal was to determine the behavioral ef-
fects of changing reward size on impulsive behavior and its
regulation by VS dopamine. We trained head-fixed mice in a
task that required them to withhold licking while expecting
outcomes of different values. We found that mice impulsivity
was correlated with expected values and that this behavior
was well captured by an RL model, in which a Pavlovian bias is
incorporated. We also found that VS dopamine release was
compatible with RPE coding as predicted by this model.
Finally, we showed that pairing surprising reward omissions
with optogenetic stimulation of dopaminergic axons in the VS
was sufficient to block learning in this task.
ª 2024 Society of Biological Psychiatry. 1
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Figure 1. An odor-guided waiting task. (A) Diagram of trial structure (top)
and events (bottom) in the task. After odor presentation, the mouse needs to
wait for a randomly delayed tone (4 6 0.25 seconds) before it can lick a
waterspout for reward (patient trial), but if it licks prematurely, the reward is
omitted (impatient trial). Waiting time is the interval between odor offset and
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METHODS AND MATERIALS

Animal Subject, Training, and Behavioral Setup

All protocols and procedures were approved by the Institu-
tional Animal Care and Use Committees at the Hebrew Uni-
versity of Jerusalem and were in accordance with the National
Institutes of Health Guide for the Care and Use of Laboratory
Animals. Seventeen male mice, 2 to 3 months of age, were
used in this study. All mice underwent stereotaxic viral in-
jections, as well as fiber and head-bar implantation for head
fixation. They were then trained in an odor-guided waiting task
that required them to withhold licking for several seconds to
receive a water reward. The mice were group housed under a
standard 12-hour light/dark cycle. During training and experi-
ment days, the mice had free access to food, but water was
only available during the behavioral sessions, with a 24-hour
period of free water on weekends.

To record dopamine release in the VS using fiber photom-
etry, we expressed the dopamine sensor GRABDA2m (27)
unilaterally in 4 mice and GFP (green fluorescent protein) in 2
control mice and then implanted an optic fiber above their VS.
To examine dopamine release effects on impulsivity, we
expressed ChR2 (channelrhodopsin-2) bilaterally in the VTA of
5 heterozygous TH-Cre transgenic mice and GFP in 4 control
mice and implanted 2 optic fibers above their VS.

All analyses were performed using custom code written in
MATLAB (version 9.9.0.2037887; R2020b; The MathWorks,
Inc.). In all figures, average data and error bars, or shaded
patches around curves, represent mean 6 SEM.

Methods are detailed in the Supplement.

either the go cue or the first premature lick in patient and premature trials,
correspondingly, and RT is the interval between the go cue and the first lick.
(B) Waiting behavior during 1 example session. Each row corresponds to a
single trial. Trials are grouped according to type and sorted according to
waiting time. Red and blue circles mark the ends of the waiting periods
(premature licks or go tones, correspondingly), and gray dots are licks. Only
trials in which the mouse licked are shown. (C) Bar plot showing the average
fraction of trials in which the mice licked (prematurely or not) in each of the
trial types (n = 14). Asterisks indicate significant difference between trial
types (***p , .001, repeated-measures analysis of variance followed by a
Tukey-Kramer post hoc test). (D) Distributions of the response times for
rewarding trials for actual and random data. The peak of the actual data was
significantly higher than that of the shuffled data (p , .05). RT, response
time; stim., stimulation.
RESULTS

An Odor-Guided Waiting Task to Measure
Impulsivity in Mice

To investigate the effect that value has on impulsivity, we
trained 14 head-fixed mice in an odor-guided waiting task
(Figure 1A, B). At the start of each trial, we randomly selected
one of the 3 odor cues (conditioned stimuli [CS]) and presented
it to the mice for 1 second. Each CS was followed by a
Gaussian-distributed waiting period (4 6 0.25 seconds). If the
mice successfully suppressed licking during the waiting
period, a go tone was played to indicate that it was safe to lick.
Each of the odors was associated with a different outcome
(unconditioned stimulus [US]): a big reward (8-mL water drop), a
small reward (4-mL water drop), and no reward. In impatient
trials, in which the mice licked before the go tone, no reward
was provided, and no additional feedback was provided to
signal the impatient behavior. In all 3 conditions, trial duration
was independent of the mice licking, thus providing no moti-
vation for the animals to lick to move more quickly to the next
trial.

After 2 to 3 weeks of training, the mice demonstrated
learning of the task’s structure and contingencies. Learning the
CS-US association was evident in trial-type differences in
licking probability. The mice almost always licked in reward
trials, and this probability was significantly lower in no-reward
trials, even though the auditory go cue was identical in the 3
trial types (F2,26 = 23.32, p , .001, one-way repeated-
2 Biological Psychiatry - -, 2024; -:-–- www.sobp.org/journal
measures analysis of variance followed by a Tukey-Kramer
post hoc test, n = 14 mice) (Figure 1C). Furthermore, we
found that the mice also learned to respond to the go tone after
it was sounded. To show this, we compared actual response
times (the intervals between the go tone and first lick) with a
randomized dataset, in which we assigned to each trial a go
tone delay that was drawn from the same Gaussian distribu-
tion, and recalculated response times. We then compared real
and randomized distributions using a sliding window
(0.05-second non-overlapping windows spanning 1 second
after the tone) and found that real responses were significantly
lower during the first 100 ms and significantly higher between
150 and 200 ms after the tone (p , .05, paired t test Bonferroni
corrected for multiple comparisons), suggesting that mice
were indeed responding to the tone (Figure 1D).
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Figure 2. Value modulation of impulsivity. (A) Bar
plot showing the mean fraction of impatient trials in
each of the trial types (n = 14). Asterisks indicate
significant difference between trial types (***p ,

.001, repeated-measures analysis of variance fol-
lowed by a Tukey-Kramer post hoc test). (B) Impa-
tient probability in big- vs. small-reward trial types.
Each circle represents one mouse. (C) Average
hazard rates of licking as a function of waiting time,
split and colored according to trial types.
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Next, to measure the effect of expected reward magnitude
on impulsivity, we compared the rate of premature responses
in the different trial types. We found that the mice were most
impulsive in big-reward trials, moderately impulsive in small-
reward trials, and mostly patient in no-reward trials (F2,26 =
151.87, p , .001, one-way repeated-measures analysis of
variance followed by a Tukey-Kramer post hoc test, n = 14
mice) (Figure 2A). We also compared the rate of premature
responses of individual mice in the 2 reward trial types (big and
small rewards) and found that these rates were significantly
correlated within mice (r = 0.95, Pearson’s correlation coeffi-
cient, p , .001) (Figure 2B). This suggested that impulsivity
was a trait that generalizes across conditions.

Finally, we sought to characterize the time course of
impulsive behavior within trials. We estimated the hazard rate
of licking during waiting and saw that it was ramping
(Figure 2C). To test the effect of reward size on the hazard, we
performed Cox regression analysis (see the Supplement) and
found that increasing reward size significantly increased the
rate of premature licking (reward size coefficient: 1.54, p ,

.001, Cox regression, n = 14 mice). We concluded that both
reward size and temporal proximity tended to increase impul-
sivity levels in mice.

An RL Model for Impulsive Behavior

The observed impulsivity is surprising if we try to interpret it in
standard RL algorithms, constructed to optimize behavior. In
contrast, Pavlovian bias is predicted to result in impulsivity
whose magnitude increases with the size of the reward, as in
Figure 2A, and with the waiting time as in Figure 2C.

Going beyond these qualitative similarities, we developed a
hybrid RL-Pavlovian model that provides quantitative pre-
dictions regarding mouse impulsivity levels as a function of
time (Figure 3A; see the Supplement for model derivation).
According to this model, the mouse computes the expected
reward’s value continuously over time. This value is a product
of 3 terms: 1) the utility of the water drop, which is assumed to
be proportional to its volume; 2) an exponential temporal dis-
counting term; and 3) the probability that the mouse will
receive the reward.

The model is characterized by 3 parameters: the discount
parameter, the utility of rewards, and the Pavlovian bias.
Nevertheless, surprisingly, it generates a parameter-free pre-
diction for the relationship between reward size and impulsivity
levels. In particular, the model predicts that impulsivity odds
B

O ¼ 12Pr
Pr

, where Pr is the reward probability (i.e., the proba-
bility of not being impulsive), is proportional to the reward size,
where the proportionality constant depends of the parameters.
Therefore, considering the behavior of the same animal for 2
reward sizes, the model predicts the following relationship:

Obig

Osmall
¼ Rbig

Rsmall
(1)

We tested this prediction in our data, comparing impulsivity in
big-reward (8 mL) versus small-reward (4 mL) trial types.
Although different animals exhibited substantial variability in
the impulsivity odds, their ratios were in a remarkable agree-
ment with theory (slope: 1.80, total least squares linear
regression relative to rewards ratio that is equal to 2; addi-
tionally, the average value of Obig

Osmall
was 2.07 6 0.17, not

significantly different from 2, p . .05, t test, n = 14 mice)
(Figure 3B).

To validate our model further, we sought to fit the model
parameters to individual mouse data. While the model repro-
duced the general trend of the behavior, there was a qualitative
discrepancy between the model’s value function (and hence its
hazard rate of licking during waiting) and the behavioral data
near the time of the reward. In particular, the model predicted a
convex hazard function, whereas the behavioral data were
leveling near the time of the reward (Figure 2C). We reasoned
that a simple explanation for this discrepancy may be that our
model ignored timing uncertainty. This could arise from both
the waiting period’s variability inherent in the task’s design and
the subjective uncertainty of timing (28,29). To account for this
variability, we added another parameter to our model that
captured timing uncertainty (see the Supplement). We then
fitted the model’s parameters to individual behavioral hazard
rates. The fitted model’s behavior was in close agreement with
the data, capturing the temporal structure of mouse impulsivity
levels (Figure 3C and Figure S1).

Dopamine Dynamics in the VS

It is widely established that VTA dopamine neurons and
dopamine release in the VS play an important role in value
learning by encoding RPEs. Therefore, we wondered whether
this system plays a similar role in impulsivity.

To examine VS dopamine release during impulsive
behavior, we expressed the fluorescent dopamine sensor
GRABDA2m (27) in the VS of 4 mice (Figure 4A and Figure S2)
iological Psychiatry - -, 2024; -:-–- www.sobp.org/journal 3
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Figure 3. A Pavlovian bias reinforcement learning model for impulsivity.
(A) Schematic diagram of the Pavlovian bias reinforcement learning model.
Value functions are computed from reward probability, time, and size and
then fed into an action module that converts values to licking probability. (B)
Scatter plot showing impatient odds in big- vs. small-reward trial types.
Each circle represents 1 mouse (n = 14). The black line shows a theoretically
derived predication for this relation. (C) Average hazard rates of licking as a
function of waiting time, split and colored according to trial types (same as
Figure 2C). The black lines correspond to the modeled hazard rates.
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and collected bulk dopamine fluorescence signals in their VS
using fiber photometry for 8 to 10 days. Figure 4B, C shows
dopamine fluorescence collected during one of the sessions,
and Figure 4D shows the average z-scored dopamine signals
in patient trials, grouped according to the trial type.

We started by analyzing dopamine signals in patient trials.
As expected, VS dopamine correlated with reward size
following both the CS and US. It was higher in big-reward trials
and smallest in no-reward trials (GRABDA2m signals from CS to
0.5 second before the US: F2,6 = 20.23, p , .01; GRABDA2m

signals 1–3 seconds after US: F2,6 = 61.00, p , .001; one-way
repeated-measures analysis of variance followed by a Tukey-
Kramer post hoc test, n = 4 mice) (Figure 4E, F). We also
examined photometry signals in 2 control mice expressing
GFP and found no responses in these mice (Figure S3).

We next turned to analyze VS dopamine signals in impatient
trials, focusing on responses after premature licking. As ex-
pected, these responses were negative. However, our model
makes another less obvious prediction that the magnitude of
dopamine responses after premature licking should be
modulated by action timing. Given that the value is increasing
with time, both due to temporal discounting and because the
probability that the animal will eventually be patient and receive
the reward also increases with time, the RPE negativity should
be greater in late than early responses (Figure 5A). This was the
case in our data, where we found that dopamine signals in a
4 Biological Psychiatry - -, 2024; -:-–- www.sobp.org/journal
2-second window (1–3 seconds after the first impatient lick)
were negatively correlated with the time of the action [linear
mixed-effects model: dopamine w 1 1 waiting time 1 (1 |
MouseID), waiting time coefficient = 20.12, p , .001, n = 4
mice] (Figure 5B–E). This suggests that dopamine responses
during impulsive behavior are sensitive to outcome timing in a
manner consistent with the RPE theory of dopamine.
A Causal Role for VS Dopamine in Value Learning

Our model suggests that impulsivity is controlled by value,
which likely depends on the probability of impatience. A pre-
mature trial indicates a higher probability of impatience,
reducing the state’s estimated value. Therefore, we hypothe-
sized that if impatience reduces subsequent impulsivity
through dopamine negativity, mice would be less impulsive
after premature trials, with this effect increasing based on the
timing of the impulsive action. Figure S4 supports this pre-
diction, showing that mice adjust their reward expectations
and value estimates, leading to trial-by-trial updating of
impulsivity.

Based on these findings, we further hypothesized that
activating VS dopamine axons during instances when a
negative response would typically occur should prevent these
behavioral changes.

To test this hypothesis, we used a modified version of the
original task, involving repeated reversal learning of reward
sizes. This design enabled us to observe and control, in a more
precise manner, changes in impulsivity levels associated with
each odor, as their values shift between blocks.

This task had the same trial structure as the previous one,
but with only 2 trial types, reward (8 mL water drop) or no
reward. However, unlike the previous task design, where
CS-US associations were fixed, in this version of the task, they
changed. Each session started with one of the 2 odors pre-
dicting reward and the other, no reward, and after 100 trials
(the proximate middle of each session), they were reversed,
such that the odor that predicted reward now predicted no
reward and vice versa (Figure 6A).

Following training and behavioral data collection in the
original task and after 2 to 3 days of familiarizing the mice with
the new odors, we found that the mice indeed displayed rapid
changes in impulsivity that were consistent with value learning.
Example behavior of one session is shown in Figure 6A. To
measure learning in this task, we evaluated the impulsivity
levels that were associated with each odor in 6 blocks, cor-
responding to early, middle, and late learning during the pre-
and postreversal halves of the session (Figure 6B). We then
tracked the impulsivity reward bias, defined as the difference
between impulsivity levels in reward and no-reward trials,
across blocks. We found that the reward bias was significantly
positive just before the reversal (0.19 6 0.04, p , .001, t test,
n = 15 mice), negative immediately after the reversal, and
positive again at the end of the session. To quantify the
learning process after the reversal, we compared early versus
late postreversal impulsivity levels and found a significant dif-
ference between them (reward bias in early vs. late blocks after
the reversal: 20.13 6 0.03 vs. 0.07 6 0.02, p , .001, paired
t test, n = 15 mice) (Figure 6C), demonstrating that mouse
impulsivity levels tracked the changing CS-US contingencies.
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(A) Scheme of the locations of the dopamine sensor
GRABDA2m expression and optic fiber placement in
the VS. (B) A heat map of z-scored dopamine signals
over the course of an example session. Each row
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spondingly). (C) Example mouse’s z-scored dopa-
mine signals aligned on odor onset and split
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y scales in the two panels. Asterisks indicate sig-
nificant difference between trial types (*p , .05,
**p , .01, repeated-measures analysis of variance
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conditioned stimulus; US, unconditioned stimulus;
VS, ventral striatum.
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To examine the causal contribution of dopamine to this
learning process, we expressed ChR2 bilaterally in the VTA of 5
TH-Cre transgenic mice and implanted 2 optic fibers in the left
and right VS. Four control mice underwent a similar surgical
procedure but were infected with a virus containing GFP rather
than ChR2 (Figure 7A and Figure S2).

After 1 week of training, during which we collected baseline
behavioral data and observed that both groups achieved a
stable reversal performance, we started a testing phase, in
which in each session, photostimulation was paired with one of
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the odors—the one that was associated with reward at the
start of the session. Photostimulation was delivered for 2
seconds only in patient trials and was triggered by the first lick
that followed the go cue (Figure 7B).

Quantifying postreversal learning, we found that the ChR2-
expressing group of mice did not show learning (reward bias in
early vs. late blocks after the reversal: 20.17 6 0.04 vs. 20.16
6 0.04, p . .05, left-tailed paired t test, n = 5 mice) (Figure 7C,
E) whereas the control groups of mice did (reward bias in
early vs. late blocks after the reversal: 20.09 6 0.05 vs.
864 10
ime from odor (s)

Figure 5. Ventral striatum dopamine responses in
impatient trials. (A) Our model predicts that because
value functions increase during the waiting period,
the magnitude of negative RPEs following premature
licking is greater in late than early licking trials. R
stands for the reward utility and the lengths of the
vertical lines correspond to the magnitude of the
corresponding RPE had the mouse was to lick pre-
maturely at that time. (B) Example mouse’s z-scored
dopamine responses aligned on odor onset and split
according to WT. Vertical dashed lines mark the
centers of the corresponding WT bins (measured
from odor offset). (C) Average z-scored dopamine
responses aligned on odor onset and split according
to WT (n = 4). (D) Same as (C) but aligned on the
time of the premature lick. (E) Bar plot showing the
mean dopamine responses in a 2-second window
after the first premature lick in impatient trials. As-
terisks indicate significant linear regression slope
coefficient (***p , .001). RPE, reward prediction er-
ror; WT, waiting time.
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0.08 6 0.03, p , .05, left-tailed paired t test, n = 4 mice)
(Figure 7D, E). This was further confirmed by a direct com-
parison of the reward bias during late blocks in ChR2-
expressing versus control mice, which revealed a significant
difference between the 2 groups (20.16 6 0.04 vs. 0.08 6
VTA
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0.03 for ChR2-expressing vs. control mice, p, .01, t test, n = 5
ChR2-expressing mice, n = 4 control mice). To verify that this
result was not due to aberrant (stimulation independent)
learning behavior in the ChR2 group, we performed a similar
analysis on data collected during nonstimulation days and
n.s.

arly Late LateEarly

*

ChR2 Control

n.s.
**

Figure 7. Optogenetic stimulation of VS dopa-
mine axons during reversal learning. (A) Scheme of
the locations of ChR2 expression in the VTA and
optic fiber placement in the VS. (B) Top: Daily
structure of the photostimulation protocol. On each
session, the odor that predicted reward at the
beginning of the session was paired with photo-
stimulation (light blue). Bottom: Schematic of trial
events. Photostimulation was triggered by the first
lick after the auditory go cue (and was therefore
present only in patient trials) and lasted 2 seconds.
(C) Average impatient probability as a function of
trial block (early, middle, and late pre- and post-
reversal blocks), split and colored according to
reward size for ChR2-expressing mice during pho-
tostimulation sessions (n = 5). (D) Same as (C) for
GFP-expressing control mice (n = 4). (E) Compari-
son between ChR2 and GFP mice regarding reward
bias in the late after-reversal period. Asterisks indi-
cate significant difference between blocks (*p , .05,
**p , .01, paired t test). ChR2, channelrhodopsin-2;
GFP, green fluorescent protein; n.s., not significant;
VS, ventral striatum; VTA, ventral tegmental area.
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found that both groups of mice showed learning (reward bias in
early vs. late blocks after the reversal: 20.17 6 0.05 vs. 0.07 6
0.03, p , .05, left-tailed paired t test, n = 5 mice; reward bias in
early vs. late blocks after the reversal: 20.14 6 0.03 vs. 0.09 6
0.04, p , .05, left-tailed paired t test, n = 4 mice) (Figure S5).

In conclusion, we found that in the ChR2-expressing mice,
pairing of the reward omission to dopamine stimulation caused
the reward bias to remain negative throughout the postreversal
period, suggesting that VS dopamine is necessary for negative
learning.
DISCUSSION

In this article, we provided theoretical and mechanistic expla-
nations for impulsive behavior in mice. We found that mouse
impulsivity is strongly linked with the expected reward size: the
higher the value, the higher the impulsivity. Furthermore, we
showed that this effect was well captured by a Pavlovian bias
RL framework. Dopamine release in the VS was found to be
consistent with RPE coding and was necessary for experience-
dependent changes in impulsivity.

In general, one may consider 3 families of explanations for
impulsivity. The first relates to optimality within trials. An animal
may be impulsive because impulsivity has an immediate
benefit, such as relieving it from mental effort (4). One could
imagine that the animal weighs this immediate benefit relative
to the forgone reward and chooses the option that is more
beneficial in that trial. The prediction of any explanation
belonging to this family is that impulsivity should decrease with
expected reward. The second relates to optimality across trials
through exploration. The animal believes that by forgoing the
reward in one trial, it will increase its future rewards. Although
there are various ways of implementing exploration in RL (5,6),
they all predict that it would either decrease or remain un-
changed with expected reward. The third relates to deviations
from optimality. There are countless possible deviations from
optimal behavior, and consistent deviations have been exten-
sively studied in behavioral economics (30). Among these,
Pavlovian bias is the only one that aligns with the waiting
impulsivity observed in our experiments

Waiting impulsivity was previously studied in tasks requiring
freely moving rodents to stay put while awaiting a reward [e.g.,
(31,32)]. One study (33) reported negative VS dopamine levels
during waiting, in contrast to the small, yet positive, responses
we observed (Figure 4). This finding was recently interpreted as
reflecting a cognitive control signal that promotes patience by
shifting the sign of the dopaminergic response (34). A possible
explanation for this discrepancy is that our use of head fixation
alters dopaminergic dynamics during waiting (35). Alterna-
tively, unlike our study, this study included interleaved “go”
trials (which did not require waiting), which could make the
waiting trials seem worse by comparison and therefore asso-
ciated with negative RPEs. A second difference between our
study and studies of waiting impulsivity in freely moving ro-
dents is that, in contrast to our findings, increasing reward size
leads to decreased impulsivity (36–38). A plausible explanation
for this discrepancy is that “waiting” may refer to 2 distinct
cognitive functions: in our case, waiting involves inhibiting an
enticing action, making impulsivity a failure of inhibition (similar
to “jumping the gun”), whereas in the other studies, waiting
B

requires persistence of inaction, with impulsivity resulting from
premature giving up. Differentiating between these 2 pro-
cesses is challenging, and both may occur simultaneously in
the same task. Therefore, we suggest that the effects of
varying reward sizes on the rate of premature responses can
serve as a benchmark for identifying the type of waiting being
studied.

Anticipatory licking in head-fixed mice is widely used as a
robust behavioral marker for value learning (39). In a previous
study (40), it was found that VTA activation after reward
omission was sufficient to maintain such licking and that the
inhibition of the same neurons at the time of reward delivery
caused a reduction in licking [see (41) for similar results]. Here,
we elaborate on these findings by providing a detailed theo-
retical account of this behavior. Premature licking (and by
extension, anticipatory licking, which similarly does not lead to
reward) occurs as a consequence of dopamine-mediated
Pavlovian bias.

Previous models for the interaction between Pavlovian and
instrumental behaviors, termed Pavlovian bias models, were
based on a Rescorla-Wagner type framework, in which
learning occurs on a trial basis (10,14,42,43), and therefore do
not explain how within-trial changes in value affect the timing
of behavior. In contrast, our model uses continuous-time value
representations and therefore explains not only global (trial-
averaged) quantities, such as overall impulsivity levels, but also
the detailed temporal structure of impulsive licking during
waiting.

Other Pavlovian RL models, such as temporal-difference
learning, also describe within-trial value dynamics during
waiting periods. These models most commonly involve parti-
tioning the continuous waiting interval into a set of discrete
microstates (19,44,45). By dispensing with discrete state rep-
resentations and defining value in continuous time, our
approach allowed us to derive exact, closed form equations
that describe impulsive behavior. Consequently, we obtained a
parameter-free quantitative prediction regarding the relation-
ship between reward size and impulsivity that we tested and
validated in our data.

Our findings on the involvement of VS dopamine in value
learning and impulsivity can be compared with a recent study
(46). This study revealed that dopamine signals in the dorsal
striatum increased gradually during waiting, and optogenetic
activation or inhibition of substantia nigra pars compacta
dopamine neurons, which project to the dorsal striatum,
caused actions to occur earlier or later, respectively. Taken
together, these results and ours lend support to the idea of a
division of labor within the basal ganglia, consistent with actor-
critic RL models (3). In particular, the dorsal striatum assumes
responsibility for the selection and execution of ongoing ac-
tions within a trial, while the VS and its associated dopami-
nergic input mediate learning and updating processes (47,48).

A potential limitation of our optogenetic experiment is that
photostimulation was not calibrated to mimic naturally occur-
ring dopamine reward responses. Recent studies suggest that
supraphysiological stimulation, compared with calibrated
stimulation, may have different effects on performance and
learning (49,50). In one study, it was found that value-like
learning occurred after supraphysiological, but not calibrated
dopamine, stimulation (49). Therefore, although the precise
iological Psychiatry - -, 2024; -:-–- www.sobp.org/journal 7
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role of dopamine in learning is still debated, our findings
nonetheless highlight the importance of value learning in
regulating impulsivity in mice.

Conclusions

Our research advances our understanding of the neural
mechanisms governing impulsivity in mice. The continuous-
time Pavlovian bias framework presented here may have im-
plications for the study of impulsivity and other affective pro-
cesses in both animal and human behavior.
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