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Decision making is the cognitive process of choosing an action 
among a set of alternatives. Decision making is often studied 
in experiments, composed of trials, each associated with a 

single decision. While a decision in a trial is primarily determined 
by the relevant features of the alternatives in that trial, biases are 
commonly observed1. Of specific relevance to this work are partic-
ipant-specific tendencies to prefer one alternative over the other(s). 
Such biases, which we term idiosyncratic choice biases (ICBs) have 
been described as early as half a century ago in perceptual discrimi-
nation2–4 and operant learning tasks5–7.

In discrimination tasks, the ICBs interfere with the estimate of 
perceptual noise. In operant learning experiments these biases mask 
the learning behavior. That is why such biases are typically consid-
ered as nuisance. When analyzing choice behavior, these biases are 
often accounted for by adding an ad hoc participant-specific bias 
parameter3 or by counterbalancing the choices to average them out.

Many factors can contribute to ICBs. For example, in perceptual 
discrimination tasks, a stimulus in a given trial is often perceived 
as being more similar to the stimuli presented in previous trials8–10. 
Similarly, participants tend to choose those actions that were previ-
ously more often rewarded11,12. Finally, participants may exhibit a 
preference towards an alternative because the corresponding motor 
action requires the least effort. Heterogeneity between the partici-
pants along any of these factors is sufficient to generate ICBs. One 
may thus expect that these biases would be diminished if these fac-
tors are controlled for in the experimental design or are factored 
out in the analysis. In contrast to this expectation, here we argue 
that even in an idealized gedanken experiment, in which symmetry 
between subjects in all the above factors is kept, substantial ICBs are 
expected. These ICBs that cannot be accounted for by the experi-
mental context are the subject of this study.

We quantify ICBs in a perceptual discrimination task and in a 
sensory-motor task, in which sequential and operant factors are 
controlled for. We then analyze the ICBs in the framework of a Drift 
Diffusion Model (DDM) and show that they are primarily the result 
of biased drift rates. Finally, we show analytically and numerically 
that ICBs naturally emerge from the intrinsic stochasticity of the 

dynamics of competing populations of spiking neurons. Our work 
thus suggests that ICBs are inevitable unless they are actively sup-
pressed, for example. by the reward schedule.

Results
ICBs in the bisection discrimination task. We quantified ICBs 
in the bisection discrimination task depicted in Fig. 1a (inset). In 
each trial, a vertical transected line was presented on the screen and 
participants were instructed to indicate the offset direction of the 
transecting line (see Methods). Figure 1a depicts the fraction of an 
‘Up’ response, pup as a function of the offset for three participants. 
As expected, the probability of a correct response increased with the 
magnitude of the offset ΔL/L ≡ (LU – LD)/(LU + LD), where LU and LD 
denote the lengths of the Up and Down segments of the vertical line. 
However, the responses differed between the three participants: the 
blue psychometric curve is shifted to the right of the black curve, 
whereas the red curve is shifted to its left.

We considered the choices of the participants in 20  
‘impossible’ trials (1/6 of the trials), in which the line was  
transected at its midpoint (ΔL = 0). The participant whose psycho-
metric curve is plotted in black in Fig. 1a responded Up in 11/20 
impossible trials, which is statistically indistinguishable from 
chance (P = 0.82, two-sided binomial test; ntrials = 20). By contrast, 
the two other participants (red and blue in Fig. 1a) exhibited signif-
icant choice biases, responding Up in 18/20 and 1/20 of the trials, 
respectively (P < 0.001, two-sided binomial tests). Overall, 48% of 
the 100 participants exhibited a significant choice bias (24% signif-
icant Up, P < 0.05, two-sided binomial test; 24% significant ‘Down’, 
P < 0.05, two-sided binomial tests, not corrected for multiple  
comparisons). These ICBs were not restricted to the impossible 
trials. Rather, they were also observed in the possible trials albeit 
to a lesser degree (mean absolute ICB ± s.e.m. in the impossible 
and possible trials were 0.46 ± 0.03 and 0.056 ± 0.007 respectively). 
Biases in the possible and impossible trials were highly correlated 
(Supplementary Fig. 1; two-sided Pearson’s ρ = 0.64, P < 0.001). At 
the population level, we could not detect a global bias. The frac-
tion of Up choices in the impossible trials across all participants  
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was 0.505, which is not significantly different from chance  
(95% CI 0.45–0.56, bootstrap).

To quantify the heterogeneity of these ICBs across the popula-
tion, we computed for each participant the difference between the 
fraction of Up and Down responses in the impossible trials. This 
measure quantifies the bias because it vanishes for unbiased choices 
(ICB = 0 for pup = 0.5) and its magnitude is maximal if choices are 
deterministic (ICB = −1 for pup = 0; ICB = 1 for pup = 1). The dis-
tribution of ICBs across the participants is depicted in Fig. 1b. Its 
width is a measure of idiosyncrasy of these biases across the partici-
pants. We found that the variance of the distribution is significantly 
larger than expected by chance (P < 0.001, two-sided bootstrap 
test, Bernoulli process; nparticipants = 100, ntrials = 20 per participant).  
These results further establish the existence of ICBs in the vertical 
bisection task.

As mentioned in the Introduction, operant effects can con-
tribute to ICBs. To minimize the contribution of feedback to the 

ICBs, participants received only sparse feedback every 30 trials on 
their accumulated performance until that point. Another potential  
contributor to ICBs is a propensity to repeat in a trial the actions 
taken in the previous trials. To minimize sequential effects, the 
impossible trials were always preceded by three irrelevant trials (see 
Methods). Indeed, the probability that a participant would repeat 
in an impossible trial the action she took in the previous (possible) 
trial was 0.50 ± 0.01 (average over participants ± s.e.m.) (see also 
Supplementary Fig. 2).

We then analyzed the ICBs in the framework of the DDM. 
According to the DDM, noisy evidence in favor of each alternative is 
integrated over the course of the trial. The difference in evidence, a 
quantity known as the decision variable, is computed and a decision 
is reached once this variable reaches one of two decision thresh-
olds. The DDM has been extensively used to explain both behav-
ioral and neurophysiological data13–18. In this framework, ICBs in 
the impossible trials can emerge via two mechanisms. In the first 
mechanism, the bias results from the initial condition of the deci-
sion variable being not equidistant from the two thresholds. In the 
second mechanism, the bias results from a drift bias of the decision 
variable, which is unrelated to the veridical evidence19–22.

We investigated which of these two mechanisms best accounts 
for the ICBs, which we observed experimentally. To that end, we fit 
choices and reaction-times of participants in the impossible trials 
to four versions of the DDM. The goodness of each fit was assessed 
using the Deviance Information Criterion (DIC; Methods). The 
first model was a baseline DDM with symmetric, that is, equidis-
tant initial condition and no drift bias. By construction, there are no 
ICBs in this model and it was only used as a baseline for compari-
son with the other three models. To dissect the relative contribu-
tions of the drift and initial condition to the ICBs, we added to this 
baseline DDM (1) idiosyncratic drift rates (‘drift bias’ DDM), (2) 
idiosyncratic initial conditions (‘IC bias’ DDM) or (3) both idio-
syncratic drift rates and idiosyncratic initial conditions (‘IC + drift 
bias’ DDM). The DICs of all three models were compared to the 
DIC of the baseline model. As depicted in Fig. 1c, all three models 
did better than the baseline model. The ‘drift bias’ DDM (green) did 
substantially better than the ‘IC bias’ DDM (purple). These results 
suggest that in the framework of the DDM, bias in initial condition 
contributes less to the observed ICBs than the bias in the drift rate. 
We further dissected the relative contributions of the drift and IC 
to the ICBs in the ‘IC + drift’ DDM (black), which did better than 
the other models (Fig. 1c). To that goal, we computed for each par-
ticipant the ICB expected from the DDM with parameters extracted 
from the ‘IC + drift’ DDM. As shown in Fig. 1d (black X marks), 
the expected and observed ICBs are in good agreement. They are 
also in good agreement when instead of the extracted initial condi-
tions, symmetric ones are used (green circles). This indicates that 
asymmetry in the initial conditions does not play an important role 
in the generation of the ICBs. Indeed, when using the extracted ini-
tial conditions but unbiased drift we failed to account for the ICBs 
(purple squares).

ICB in the motor task. Next, we constructed a motor task, in which 
ICBs are unlikely to emerge from idiosyncratic sensory asymme-
tries. In each trial, two adjacent colored dots were displayed on a 
white circular background (inset in Fig. 2a, see also Supplementary 
Fig. 3a). Participants were instructed to drag, as fast as possible, these 
two dots into a central region indicated by a larger black disk. To 
ensure that the participants would make two temporally-separated 
reaching movements, we introduced a 1.1 s delay after the comple-
tion of the dragging of the first colored dot (Methods). The task 
was presented to the participants as a motor-speed task, in which 
faster movements are more rewarded (see Methods). However, the 
behavioral parameter that we were interested in was the order in 
which participants chose to execute the two dragging movements. 
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Fig. 1 | ICBs in the vertical bisection task. a, Psychometric curves of three 
participants: the observed fraction of responding Up, pup, vs. the sensory 
offset ΔL/L. Error bars denote the s.e.m. Curves are best-fit logistic 
functions. Inset: a schematic illustration of the stimulus in a single trial.  
b, Distribution of ICBs (ICB = pup – pdown) of all participants (n = 100).  
The ICBs of the three participants in a are denoted in the histogram by 
arrows of corresponding colors. c, Model comparison using DIC (Methods). 
The DIC of the ‘IC bias’ DDM (purple), ‘drift bias’ DDM (green) and  
‘IC + drift bias’ DDM (black) were measured relative to the baseline DDM, 
ΔDIC = DICmodel – DICbaseline. Error bars are s.e.m., based on three repetitions 
of the fitting procedures. Results indicate that the ‘IC + drift’ DDM 
accounts for the data slightly better than the ‘drift bias’ DDM and much 
better than the ‘IC bias’ DDM. d, Relative contributions of the drift-bias 
and IC-bias to the ICBs in the ‘IC + drift bias’ DDM. Each symbol depicts 
a single participant. Abscissa: the observed pup in the impossible trials. 
Ordinate: expected pup, based on average posteriors of each participant in 
the biased ‘IC + drift’ DDM (equation 6 in Methods). Black X marks: both 
initial conditions and drifts were taken from the ‘IC + drift’ DDM. Green 
circles: drifts were taken from the ‘IC + drift’ DDM with symmetric initial 
conditions (z = 0.5 in equation 6). Purple squares: initial conditions were 
taken from the ‘IC + drift’ DDM assuming no drift (A = 0 in equation 6). 
Gray line is the diagonal. Slopes of best-fit orthogonal regressions are: 
black X marks, 0.96; green circles, 0.93; purple squares, 0.04. Note that in 
contrast to c, in which the three different DDM variants are compared,  
d dissects the contribution of the drift and IC biases in a single model, 
the ‘IC + drift bias’ DDM. Expected (simulated responses) vs. observed 
probability for all three DDM variants are depicted in Supplementary Fig. 9a.
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In that sense, this paradigm is a symmetric, binary, implicit, deci-
sion-making task. In this task, choice bias manifests as a particular 
preference in the order in which the two dots are dragged. Each 
participant was presented with 10 pairs of dots, each pair differing 
in colors and locations. Each of these pairs was presented 20 times 
in a pseudorandom order. The ICB of a participant for a given pair 
of dots was defined as the difference between the fraction of trials 
in which the clockwise (CW) and counterclockwise (CCW) dot was 
dragged first (ICB ¼ pcw � pccw

I
). This allowed us to measure 10 dif-

ferent ICBs (one for each pair) for each participant.
Figure 2a depicts the distribution of choice biases across the par-

ticipants for a particular pair of dots (inset). At the population level, 
we could not detect a global bias. The fraction of clockwise choices 
across all participants was 0.55, which is not significantly different 
from chance (95% CI 0.40–0.70, bootstrap, nparticipants = 20, ntrials = 20 
per participant). Nevertheless, 65% of the participants (13 partici-
pants) exhibited significant ICB for this pair (35% significant pref-
erence towards choosing first the clockwise dot and 30% significant 
ICB in favor of choosing first the counterclockwise dot; P < 0.05, 
range from P < 0.001 to P = 0.04, two-sided binomial tests, not cor-
rected for multiple comparisons). Consistent with that, the vari-
ance of the distribution of ICBs in that pair was significantly larger 
than expected by the population-average (P < 0.001, two-sided 
bootstrap test, Bernoulli process, nparticipants = 20, ntrials = 20 per par-
ticipant). Variance of the distributions of ICBs that is significantly 
larger than expected by the population-average (P < 0.001, two-
sided bootstrap test, Bernoulli process) was observed in all ten pairs 
(Supplementary Fig. 3b). The distribution of ICBs over all pairs is 
depicted in Fig. 2b. As in the bisection task, at the population level 
we did not detect a global bias. The fraction of clockwise choices 
across all pairs was 0.49 (95% CI 0.44–0.54, nparticipants = 20, npairs = 10 
per participant, ntrials = 20 per participant per pair). The distribu-
tion of ICBs in the motor task was broader than that distribution  

in the bisection task (compare Figs. 1b, right, and 2b; standard  
deviations are 0.55 and 0.70, respectively, P < 0.001, shuffling; 
motor, nparticipants = 20, npairs = 10 per participant, ntrials = 20 per partici-
pant per pair; bisection, nparticipants = 100, ntrials = 20 per participant). 
Moreover, the distribution of ICBs in the motor task seems bimodal. 
Indeed, a dip test for unimodality23 revealed that the ICB distribu-
tion in the motor task, but not in the bisection task, significantly 
deviated from unimodality (P < 0.001, nICBs = 200 and P = 0.14, 
nICBs = 100, respectively).

We then analyzed the ICBs using the DDM framework  
(Fig. 2c,d). As in the bisection task, the ‘drift bias’ model (green) 
did substantially better than the ‘IC bias’ model (purple) for all ten 
pairs, indicating a smaller contribution to behavior of the biased 
initial conditions relative to the contribution of biased drift rates. 
The DIC of the ‘IC + drift bias’ DDM (black) was comparable to the 
DIC of the ‘drift bias’ DDM (Fig. 2c). In half of the pairs, the DIC 
of the ‘IC + drift bias’ DDM model was the lowest, whereas in the 
other half, the DIC of the ‘drift bias’ DDM was the lowest. We fur-
ther dissected the contributions of drift biases and initial conditions 
to the observed ICBs using the ‘IC + drift bias’ DDM (Fig. 2d). As in 
the bisection task, we found that drift bias, rather than asymmetry 
in the initial conditions, is the dominant contributor to ICBs in the 
motor task.

ICB in the Poisson network model. What underlies participant-
to-participant differences in drift rates in the bisection and motor 
tasks? To address this question, we constructed a simple neuronal 
network model of decision making and used it to study behavior 
in the bisection task. The network consists of two populations of 
neurons representing Up and Down choices, denoted by ‘U’ and ‘D’ 
(Fig. 3a, left). Each population is made of N/2 independent Poisson 
neurons, such that the spike train of each neuron in a trial is an inde-
pendent homogeneous Poisson process. The firing rates of the neu-
rons depend on the offset in the input (ΔL) such that the firing rates 
of the U neurons increase with ΔL, whereas that of the D neurons 
decrease with ΔL (Fig. 3a, right). In addition, each neuron receives 
an offset-independent input, which captures the heterogeneity in 
the firing rates of the neurons within each population (see equation 
1 in Methods). Specifically, the firing rates of the neurons are drawn 
from log-normal distributions, whose parameters depend on the 
offset (orange and pink distributions in Fig. 3a). In the absence of an 
offset (ΔL = 0), the firing rate distributions of the two populations 
are the same (blue distribution in Fig. 3a, right). Both the Poisson-
like firing of action potentials24 and the log-normal distribution of 
firing rates25,26 are hallmarks of cortical dynamics.

In this model, we consider the cumulative number of spikes, 
nU tð Þ
I

 and nD tð Þ
I

, emitted by populations U and D up to time t in 
a trial. A decision is made at time t*, at which the absolute value of 
the difference in the numbers of spikes, Δn tð Þj j ¼ nU tð Þ � nD tð Þj j

I
, 

reaches a given threshold, θ, for the first time. The decision is Up if 
Δn t*ð Þ ¼ θ
I

, whereas it is Down if Δn t*ð Þ ¼ �θ
I

 (Fig. 3b).
The psychometric curve of an example network is depicted in  

Fig. 4a (center; black). Because of the dependence of the firing 
rate distributions on ΔL, the larger ΔL the more likely it is that the 
network would choose Up. However, the outcome of this decision 
process is not deterministic. Because spiking is stochastic, Δn(t) 
occasionally reaches the threshold that is incongruent with the 
stimulus, resulting in an error. More generally, because of this sto-
chasticity, the psychometric curve is a smooth sigmoidal function of 
ΔL rather than a step function. Note that in the black psychometric 
curve of Fig. 4a (center), the network’s perceptual decision in the 
‘impossible trials’ is approximately at chance level. Thus, this par-
ticular network does not exhibit a substantial ICB.

The black psychometric curve in Fig. 4a (center) was obtained for 
a particular realization of the network. The red and blue lines in Fig. 4a  
(center) depict the psychometric curves of two other realizations  
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Fig. 2 | ICBs in the motor task. ICB = pcw – pccw where pcw and pccw are the 
probabilities of choosing first the clockwise and the counterclockwise 
dot. a, The distribution of ICBs of all participants (n = 20) for the pair 
of dots in the inset. b, The distribution of ICBs for all 10 pairs of dots 
in the experiment (color-coded as in Supplementary Fig. 3b). c, Model 
comparison using DIC, as in Fig. 1c. Model fits were performed separately 
on each pair of dots. Bars and error bars denote the average and s.e.m. 
ΔDIC, over the 10 pairs of dots. d, Same as Fig. 1d, demonstrating that the 
ICBs in the motor task are dominated by the drift-biases. Slopes of best-fit 
orthogonal regressions are: black X marks, 0.98; green circles, 0.99; purple 
squares, −0.01.
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of the network. Despite the fact that the three networks were con-
structed in the same way, that is, by randomly drawing the firing 
rates of the neurons from the same distributions, the red and blue 
curves are horizontally shifted relative to the black psychometric 
curve. Thus, in contrast to the ‘black’ network, the ‘red’ and ‘blue’ 
networks exhibit ICBs in favor and against responding Up. The dis-
tribution of the ICBs across networks is depicted in Fig. 4b (center). 
It demonstrates that a wide distribution of ICBs naturally emerges 
in this decision network model.

It is possible to mathematically prove that for a large network, 
the behavior of this Poisson network model is equivalent to that of 
a DDM with a biased drift (Methods). The accumulation of the dif-
ference in the spike counts can be mapped to the accumulation of 
noisy evidence in the DDM; trial-to-trial variability results from the 
stochasticity in the neuronal firing; the drift bias stems from the 
heterogeneity in the firing rates in the two populations. In what fol-
lows, we provide an intuitive explanation for the emergence of ICBs 
in the Poisson network model.

A wide distribution of ICBs in a network consisting of a small 
number of neurons is easy to understand. Let us consider the 
impossible trials in a network composed of only two Poisson neu-
rons (equation 1 in Methods), each representing one alternative (Up 
or Down). The firing rates of the two neurons are independently 
drawn from the same lognormal distribution. However, the actual 
firing rates of these two neurons will, in general, differ in any given 
network. In some realizations of the network the firing rate of the U 
neuron will be higher than that of the D neuron, whereas in others, 
it will be lower. Choice is determined by the first threshold-reaching 
of the accumulated difference in the number of spikes fired by the 
neurons. It will more often be congruent with the neuron whose fir-
ing rate is higher. However, because the firing of spikes in the model 
is stochastic, the decision in a minority of trials will be incongru-
ent with that neuron. This argument implies that this two-neuron 
network exhibits an ICB, which results from the interplay between 
the Poisson noise and the heterogeneity in the firing rates of the two 
neurons. The spiking stochasticity decreases the bias, whereas the 
firing-rate heterogeneity increases it.

It is thus clear why ICB is natural in such small decision-mak-
ing networks. However, it is not immediately clear why ICBs are 
observed in Fig. 4, in which the number of neurons in the net-
work is large (N = 200,000). In this case, the difference between 
the population averaged firing rates of the U and D neurons is van-
ishingly small. This is because in large networks, this difference is 

of the order of 1=
ffiffiffiffi
N

p

I
, where N is the number of neurons. Thus at 

first sight, heterogeneity in the firing rates should not play a sig-
nificant role in the decision process in large networks. This, how-
ever, is incorrect in this case because the larger the network is, the 
more sensitive it is to the difference in the average firing rates of 
the two populations. This increased sensitivity ‘compensates’ for the 
decrease in the difference in the average firing rates. To understand 
why larger networks are more sensitive to this difference, we note 
that by construction, a population with a smaller average firing rate 
can ‘win’ in a trial over a population with a higher average firing 
rate only if in that trial, its population-average spike count is larger 
than the population-average spike count of the latter network. (note 
that the population-average spike count but not the population-
average firing rate differs between trials). Specifically, because of 
the Poisson firing of the neurons, the population-average spike 
count in a trial is a stochastic variable whose mean is given by the 
population-average firing rate and its standard deviation decreases 
with the population size (in proportion to 1=

ffiffiffiffi
N

p

I
). Thus, the larger 

the network, the more sensitive it is to the population-average fir-
ing rate heterogeneity (in proportion to 

ffiffiffiffi
N

p
I

). Because the sensitiv-
ity to the heterogeneity increases in proportion to 

ffiffiffiffi
N

p
I

, while the 
heterogeneity itself decreases in proportion to 1=

ffiffiffiffi
N

p

I
, the effect 

of the heterogeneity in firing rates on behavior is independent of  
N (in the limit of large N). Thus, even if N is very large, the distribu-
tion of ICBs is wide (Methods).

Unlike network size, the decision threshold has a large effect 
on the magnitude of the ICB. This is depicted in Fig. 4a, where the 
psychometric curves of three networks, only differing in the value 
of the decision threshold, are plotted. The larger the threshold, 
the steeper is the psychometric curves. This is because the time it 
takes the network to reach a decision increases with the threshold  
(Fig. 4c). Thus, a larger threshold results in the integration of spikes 
over longer durations before a decision is made. Therefore, the deci-
sion outcome is less sensitive to the Poisson noise (and thus more 
sensitive to the difference in the population-average firing rates). 
On the other hand, the network heterogeneity is independent of 
decision time. Because the magnitude of the ICB is determined by 
the interplay of the Poisson noise and networks heterogeneity, the 
larger the threshold is, the broader will be the distribution of ICBs 
(Fig. 4b; see also equation (5) and Supplementary Fig. 4c,d).

ICB in the recurrent spiking network. Our analysis of the Poisson 
model suggests that decision making networks exhibit ICBs if (1) 
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the constituting neurons fire irregularly (for example, Poisson), 
(2) the neuronal firing rates are heterogeneous (for example, log-
normally distributed) and (3) decision is based on competition (for 
example, threshold crossing of the difference in spike counts). In the 
Poisson model, these three ingredients are introduced ad hoc. Here 
we investigate a spiking network model in which these features are 
emergent properties of the network dynamics.

This model builds on previous studies that have shown that 
recurrent networks of excitatory and inhibitory neurons connected 
by numerous and strong synapses readily operate in a regime in 
which excitation is dynamically balanced by inhibition27. Two hall-
marks of this regime are (1) Poisson-like temporal variability of 
spike timing (Fig. 5b and Supplementary Fig. 5) and (2) approxi-
mately log-normally distribution of firing rates (Fig. 5c). These 
features emerge from the intrinsic deterministic dynamics of the 
network (even when the neurons are identical and receive the same 
external input)28,29. Similar to previous models of decision mak-
ing30,31, competition between the alternative actions in our model is 
mediated by inhibition.

Our model consists of 32,000 excitatory and 8,000 inhibitory 
Leaky Integrate and Fire (LIF) neurons (Fig. 5a; see Methods). 
All neurons receive a feedforward input, which is selective to the 
stimulus. For half of the neurons (U neurons), this input linearly 
increases with ΔL, whereas for the other half, (D neurons), it is a 
decreasing function of ΔL (Fig. 5a, bottom). When the two seg-
ments are of equal length (impossible trials), the U and D neurons 
receive the same feedforward input. All neurons are recurrently  

connected by strong synapses in a random and non-specific manner,  
that is, independent of the selectivity properties of the pre- and 
post-synaptic neurons. The competition between the U and the D 
neurons is mediated by an additional set of inhibitory connections, 
which are functionally specific, less numerous but stronger than the 
unspecific ones (Fig. 5a, center; black, specific; gray, non-specific). 
To investigate the dynamics of this model we performed numerical 
simulations (See Methods).

Figure 5d,e depict the spike times of 2,000 excitatory and 2,000 
inhibitory neurons in two ‘impossible’ trials. Before the stimulus is 
presented (t < 0), the activities of neurons in population U and D 
are similar (Fig. 5d). In response to the sensory stimulus (t = 0), the 
neurons in both populations increase their firing rates. Because of the 
competition induced by the specific inhibitory connectivity, popula-
tion D inhibits population U and as a result population U disinhibits 
the excitatory neurons in population D. In our model, the decision 
occurs once the relative difference in the average firing rates of the 
excitatory neurons of the U and the D populations exceeds a threshold. 
After the decision is made, the feedforward stimulus-dependent input 
ceases and the network activity reverts to its baseline levels (Methods). 
The dynamics of the decision of the same network in an impossible 
trial in which the opposite decision is made is depicted in Fig. 5e.

While a decision in the model is determined by the activities of 
the excitatory populations, the inhibitory neurons are also selective 
(compare the activities of the inhibitory neurons in the two impos-
sible decisions in Fig. 5d,e). To test this, we simulated 10 networks 
(500 impossible trials per network). At the time of decision, the 
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population-average firing rates of the U and D inhibitory neurons 
were congruent with the decision in all the simulations.

Figure 6a (center, black) depicts the psychometric curve of a spe-
cific network. When the magnitude of ΔL is large, the perceptual 
decision of the network is almost always correct; as ΔL decreases, 
the error rate increases. Considering the ‘impossible trials’ (ΔL = 0), 
the network’s perceptual decision is approximately at chance level 
(pup = 0.504 ± 0.022). However, different realizations of the connec-
tivity matrix yield psychometric curves, which are laterally shifted 
(red and blue curves in Fig. 6a). In contrast to the ‘black’ network, 
the ‘red’ and ‘blue’ networks exhibit substantial ICBs (pup = 0.94 ± 
0.01 and 0.15 ± 0.02, respectively).

To estimate the distribution of ICBs in our recurrent network 
model, we simulated 200 networks, which only differed in their real-
izations of the connectivity matrix. We computed the ICB of each 
network from its choices in 500 ‘impossible’ trials. The center panel 
in Fig. 6b depicts the distribution of these ICBs across the 200 net-
works. It is significantly wider than expected by chance (P < 0.001, 
two-sided bootstrap test, fair Bernoulli process, nnetworks = 200,  
ntrials = 500 per network).

The level of competition in our model is determined by the 
strength of the functionally specific inhibition, g (see Methods). 
Figure 6b depicts the distribution of ICBs for three values of g. 

As g increases, the width of the distribution decreases and its 
shape changes from concave to convex. The distribution of deci-
sion times also varies with g. The larger g the faster is the aver-
age decision time (Fig. 6c). When the recurrent network model is 
analyzed in the framework of the ‘drift bias’ DDM, decreasing the 
specific inhibition g manifests primarily as an increase in the deci-
sion threshold (Supplementary Fig. 6). Moreover, we found that 
a ‘drift bias’ DDM better explains the network dynamics than ‘IC 
bias’ DDM (Supplementary Fig. 7a). Finally, when the relative con-
tribution of the drift bias and IC bias are tested in the ‘IC + drift 
bias’ DDM, the contribution of drift bias dominates the emergent 
ICBs (Supplementary Fig. 7b). The latter results are similar to those 
observed in the behavioral data (Figs. 1d and 2d).

The conditional bias function. Responses in decision-making 
tasks can also be analyzed using the conditional bias function 
(CBF). This function quantifies the relationship between bias 
magnitude and reaction time within the responses of the deci-
sion-maker19. In the ‘bias drift’ DDM, the distributions of deci-
sion times for congruent and incongruent choices are equal17,32–34. 
Therefore, the bias of a ‘bias drift’ DDM decision-maker is inde-
pendent of its decision time. By contrast, in the ‘IC bias’ DDM, the 
bias decreases with decision time19,20.
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We applied the CBF analysis to the impossible trials in our tasks. 
Figure 7a depicts the CBF of the responses of the recurrent network 
model, averaged over the 200 networks of Fig. 6. For all values of g 
tested, the magnitude of the choice bias decreases with reaction time 
(one-sample t-test, t(199) = −2.67, −8.91, −16.06, −23.01, −19.70, 
−18.40, −19.67 and −21.65 for g = 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3 and 
3.4, respectively; P = 0.008 for g = 2.7 and P < 0.001 for all other 
values of g; nnetworks = 200). The larger g, the more negative is the 
slope of the CBF (Fig. 7a, inset, slope of average slopes = −0.0023, 
95% CI −0.0034 to −0.0012). In comparison, the fitted ‘IC + drift 
bias’ DDM captures only a fraction of this dependence. The slopes 
of choice bias vs. reaction time are of a smaller magnitude in the 
DDM model (paired t-test, t(199) = −3.44, −11.17, −18.38, −25.00, 
−19.75, −20.47, −20.06 and −21.42 for g = 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 
3.3 and 3.4, respectively, P < 0.001 for all values of g, nnetworks = 200). 
The difference in slopes between the recurrent network model and 
the DDM is particularly pronounced for the larger values of g (com-
pare insets of Fig. 7a,b).

We hypothesize that the discrepancy between the CBF of the 
recurrent network model and that of the corresponding ‘IC + drift 
bias’ DDM results from a qualitative difference between the deci-
sion process in the DDM and the recurrent network. Competition 
in the recurrent network but not in the DDM results in an effective 
positive feedback. As a result, evidence accumulated in the begin-
ning of the decision process has a larger effect on the responses 
than the evidence accumulated later in that process. This is par-
ticularly pronounced for large values of g, in which the positive 
feedback is stronger.

This discrepancy prompted us to compute the CBF in our 
behavioral data. We found no significant difference in the slopes 
between the behavior in the motor task and the corresponding 
‘IC + drift bias’ DDM fit (gray in Fig. 7c, mean ± s.e.m. slopes are 
−0.0005 ± 0.0003 and −0.0002 ± 0.0001, respectively; paired t-test, 
t(197) = −1.04, P = 0.30, nparticipants×pairs = 198). By contrast, the mag-
nitude of the slope in the bisection task was significantly and sub-
stantially larger than that of the corresponding DDM fit (black in 
Fig. 7c, slopes are −0.0023 ± 0.0004 and −0.0005 ± 0.0002, respec-
tively; paired t-test, t(99) = −6.02, P < 0.001, nparticipants = 100). Note 
that the ICB distribution in the motor task is wider than that dis-
tribution in the bisection task. In the framework of the recurrent 
network model, the motor task corresponds to a smaller value of 
g, whereas the bisection task corresponds to a larger g. Indeed, this 
correspondence of motor and bisection tasks to smaller and larger 
g in the recurrent network is also maintained in the CBF analysis. 
Together, these results indicate that the recurrent network model 
captures additional features of behavior, beyond the ‘IC + drift bias’ 
DDM (and the Poisson network model).

Discussion
We experimentally investigated human ICBs in a discrimination 
task and in a motor task. We analyzed the behavior of the partici-
pants in the framework of the DDM. We found that in this frame-
work, idiosyncratic biases in the drift rate account for these ICBs. 
We proved mathematically in a particular model that ICBs due to 
idiosyncratic drift biases naturally emerge in a network character-
ized by (1) irregular firing of the neurons, (2) heterogeneity of their 
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firing rates and (3) competition. Finally, we constructed a recurrent 
network model of spiking neurons, in which these three features are 
the result of the deterministic dynamics. We numerically simulated 
this network and demonstrated that it exhibits ICBs, whose features 
are similar to those observed experimentally. Taken together, our 
results show that ICBs naturally emerge from the intrinsic dynamics 
of decision-making neural circuits.

In the framework of the DDM, choice bias can emerge either 
from a drift-bias in the decision variable or from asymmetry in its 
initial condition19–22. There is an active area of research that maps 
different factors affecting choice bias to these two mechanisms. In 
perceptual tasks, stimuli affect responses via the drift rate13. Other 
factors such as decision cutoff19,21 and the bias induced by the action 
taken in the previous trial35 have both been primarily associated 
with biases in the drift rate. Arousal levels also affect the magni-
tude of choice biases through the drift rate36. By contrast, asymme-
tries in the prior distribution of stimuli or in the reward schedule 
predominantly manifests as an asymmetric initial condition19,21,22,37 
(but see ref. 38, for an example when manipulations on prior prob-
ability of the rewarded choice do not manifest as an asymmetric 
initial condition but rather mediated by a biased accumulation of 
evidence). Heterogeneity among the participants along any of these 
factors is expected to result in ICBs. Our modeling work predicts 
the existence of additional, irreducible, ICBs. These ICBs cannot 
be explained by the experimental context and manifest as drift rate 
idiosyncrasies in the DDM. Our experimental work reports such 
ICBs in a discrimination task and a motor task.

Considering the temporal-scale of stochasticity, ICBs in the two 
models that we have investigated emerge from the interplay of two 
sources: (1) stochasticity in the timing of action potentials; (2) het-
erogeneity in the neuronal firing rates. Stochasticity in the timing 
of action potentials differs between trials and therefore we can refer 
to it as fast noise. By contrast, the second source of stochasticity is 
the same in all trials and therefore, we can refer to it as frozen noise. 
Cortical dynamics exhibits additional time-scales39. Incorporating 
additional time-scales to the models will not qualitatively affect the 
results, as long as the contributions of these additional sources of 
stochasticity are of the order of 1=

ffiffiffiffi
N

p

I
 (where N is the number of 

neurons in the network).

To identify the potential contribution of stochasticity at minutes’ 
time-scale, we tested whether ICBs differed between the first and 
second halves of our experiments. We did not observe changes in 
the ICBs in this time-scale that are statistically significant (verti-
cal bisection + motor: two-sided permutation test identified signifi-
cant, differences in only 17/300 of the pairs, P < 0.05, not corrected 
for multiple comparisons). It will be interesting to quantify the 
dynamics of ICBs over longer time-scales.

With respect to the effect of correlations, spikes in the Poisson 
model are uncorrelated in time and between neurons and as a 
result, the magnitudes of both fast and frozen sources of stochas-
ticity decrease as 1=

ffiffiffiffi
N

p

I
 for sufficiently large networks. Their ratio 

and hence the distribution of ICBs become independent of N for 
sufficiently large networks. The two sources of stochasticity also sat-
isfy these scalings in the recurrent network model. This is because 
the network operates in the balanced regime27,40. Noise correlations 
in the spike count of the neurons are therefore very weak41–43 and 
the firing rates are widely distributed and are uncorrelated between 
neurons28. In networks exhibiting correlations in the neuronal activ-
ity42,43, averaging over neurons may not decrease the fast noise and 
the heterogeneities as 1=

ffiffiffiffi
N

p

I
. If the dependence of the two on N is 

very different, one source of stochasticity could dominate, resulting 
in deterministic or unbiased choices.

In relation to other spiking network models, the dynamics of 
decision-making has been previously modeled using networks of 
LIF neurons. There are several key differences between our recur-
rent spiking network model and those previous models. In previous 
studies31,44, the recurrent connectivity of the competing populations 
encoding for the decision outcome is all-to-all and fully symmetric, 
and individual connections are weak (of the order of 1/N where N is 
the number of neurons in the network). By contrast, the connectivity 
in our decision-making network is sparse and random and the con-
nections are strong, with postsynaptic potentials that are comparable 
to physiological data45. As a result, our network operates in the bal-
anced regime, in which irregular firing as well as heterogeneity in the 
firing rates are generated by the intrinsic recurrent dynamics, rather 
than being due to extrinsic heterogeneity and stochastic input.

Another difference between our spiking model and those used 
in previous modeling studies is in the connectivity which mediates  
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the competition between the two alternatives. Previous models 
assumed that the competition between the populations encoding the  
alternatives is mediated by a single pool of inhibitory neurons. In 
other words, in all these models the inhibition is non-selective31,46,47. 
By contrast, in our model, the inhibitory connectivity depends on 
the functional specificity of the pre and postsynaptic neurons. As 
a consequence, the activity of the inhibitory neurons is selective 
and the nature of the decision (Up or Down) can be read out from 
the inhibitory populations as well as from the excitatory ones (Fig. 
5d,e). This feature, which previous spiking network models did not 
exhibit, is consistent with a recent experimental report48.

We would like to note that there are alternative interpretations 
to the observed ICBs. For instance, idiosyncratic postures can 
affect the perception of the visual stimuli or the effort associated 
with motor responses. One cannot rule out the possibility that such 
idiosyncrasies contributed to the ICBs in the bisection task, which 
was performed online. In the motor task, by contrast, all partici-
pants were dextral and the positions of the chair, screen and mouse 
pad were kept the same for all participants. Nevertheless, we cannot 
exclude the possibility that differences in participants’ anatomy, for 
example, their arm length, contributed to the ICBs.

Reinforcers49–51 and more generally, the specific history of stim-
uli also influences preferences in perceptual tasks9,52. Along these 
lines, it is natural to attribute ICBs to the specific histories of the 
participants during the experiment. We therefore designed our 
tasks to minimize operant and sequential effects. Nevertheless, we 
cannot exclude the possibility that the observed ICBs are the result 
of operant or sequential effects which occurred before the experi-
ment. For example, considering the impossible trials in our bisec-
tion task, participants may favor the Down arrow button because 
they are accustomed to pressing taskbar icons that are located at the 
bottom of their computer monitor. Other participants may prefer 
the Up arrow button because they are used to a taskbar located at 
the top of the screen. In such a view, ICBs in the vertical bisection 
task can be attributed to idiosyncratic histories of computer usage 
prior to the experiment.

All of the above effects can contribute to ICBs. However, we 
showed that these and similar explanations are not necessary. All 
that is required for ICBs are minute differences between the popu-
lations encoding the two alternatives. Such differences are almost 
inevitable in any 2-alternative task, in which the two alternatives are 
represented by different populations of neurons.

Substantial ICBs were observed in genetically-identical flies that 
were reared in the same environment53. The results of that study 
suggest that biases can emerge from effects that are unpredict-
able from genetic, environmental or anatomical variables. This is 
in line with our study that showed that the random differences in 
the fine structure of connectivity between the neuronal populations 
involved in decision-making are sufficient to account for the ICBs. 
In conclusion, the occurrence of ICBs in a cortical-based decision 
task is thus almost inevitable. It would be therefore surprising to 
find a decision task that is devoid of ICBs, unless they are actively 
suppressed, for example, by penalizing them.

methods
The perceptual discrimination task. The study was approved by the Hebrew 
University Committee for the Use of Human Subjects in Research and all 
participants provided informed consent. Recruitment was based on the online 
labor market Amazon Mechanical Turk54. Data were collected from 100 
participants (51 males, 49 females; 91 dextrals, 7 sinistral, 2 ambidextrous; mean 
age = 39 years, min = 22 years, max = 71 years). All participants were Mechanical 
Turk’s Masters, located in the United States of America. All participants reported 
normal or corrected to normal vision and no history of neurological disorders. 
The experiment was described as an academic survey of visual acuity. A base 
monetary compensation was given to all applied participants for the participation. 
In order to encourage good performance throughout the experiment, an 
additional bonus fee was given for every correct response and another bonus was 
guaranteed to 10% of participants with highest scores.

Procedure. Participants were instructed to indicate the offset direction of the 
transecting line, out of two alternative responses. Possible responses were either 
‘Left’ or ‘Right’, for the horizontal discrimination task, or Up or Down, for the 
vertical discrimination task. Participants were asked to answer as quickly and 
accurately as possible.

In each trial, a 200 pixel-long white line, transected by a perpendicular 20 
pixel-long white line was presented on a black screen (Fig. 1a, inset). The stimuli 
were limited to a 400-pixel × 400-pixel square at the center of the screen. Window 
resolution was verified for each participant individually, to make sure that it did 
not exceed the centric box in which all stimuli were presented. The horizontal 
location of all vertical bisection lines and the vertical location of all horizontal 
bisection lines were centered. After 1 s, the stimulus was replaced by a decision 
screen composed of two arrows buttons, appearing in opposite sides of the screen, 
and a middle 4-squares submit button. The participants indicated their decision by 
moving the initially centered cursor to one of the arrow buttons, pressing it, and 
finalizing their decision by pressing the ‘submit’ button. No feedback was given 
regarding the correct response. The participants were, however, informed about the 
accumulated bonus fee every 30 trials.

The experiment consisted of 240 trials, 120 horizontal and 120 vertical. Trials 
were ordered in 80 alternating blocks of 3 horizontal and 3 vertical transected 
lines. Unbeknown to the participants, there were 20 impossible horizontal and 
20 impossible vertical trials (1/6 of the trials). To minimize sequential effects 
in the impossible vertical bisection trials, each impossible vertical bisection 
trial was preceded by three horizontal bisection trials. The order of the trials 
was pseudorandom but identical for all participants. For the possible trials, the 
deviation from the veridical midpoint was uniformly distributed between 5 and 
10 pixels ( ΔLj j=L

I
 between 0.05 and 0.1, where ΔL=L  LU � LDð Þ= LU þ LDð Þ

I
 and 

LU and LD denote the lengths of the Up and Down segments of the vertical line), 
with an equal number of offsets in each direction. Because it is well established 
that in the horizontal bisection task participants exhibit a global bias (attributed 
to pseudoneglect55), we focused on the vertical bisection trials in quantifying 
ICBs and performance. Mean performance in the possible vertical trials was 
96.4% ± 4.6% (standard deviation), range 71%–100%. No participants were 
excluded from the analysis. In the DDM analysis we excluded trials, in which the 
reaction time was longer than 3 s. This excluded 1% of the vertical bisection trials.

To verify that the participants understood the instructions, they were required 
prior to the experiment to successfully complete a horizontal-bisection practice 
session and a vertical-bisection practice session. A session consisted of blocks of 
4 easy trials ( ΔLj j=L ¼ 0:2

I
) with feedback and balanced polarity of ΔL. The main 

experiment started after the participant completed one horizontal and one vertical 
block successfully. Responses in this practice session were not included in the analysis.

The motor task. The study was approved by the Hebrew University Committee 
for the Use of Human Subjects in Research and all participants provided informed 
consent. The experiment was described as an academic survey testing speed of 
motion. Data were collected from 20 participants (13 males, 7 females; all dextrals; 
mean age = 25 years, min = 19 years, max = 41 years) who were recruited using on-
campus advertising. All participants reported normal or corrected to normal vision 
and no history of neurological disorders.

Procedure. In each trial, a pair of dots, equally distant from a central black disk, were 
presented on a background of a larger white disk (Fig. 2a and Supplementary Fig. 
3a). Participants were instructed to drag as quickly as possible the two dots into the 
black disk using the mouse cursor. Each trial started with a forced delay period of 
0.75 s. Then, the mouse cursor appeared in the center of the disc. The participant 
used the mouse to move the cursor to one of the dots. She then dragged the chosen 
dot to the central black disk by pressing the mouse and moving it. If accurate, a 
release of the dot on the central black disk resulted in a 1.1 s ‘swallowing’ of the dot 
animation, indicating a successful drag. The dragging time (measured from the time 
of clicking on the dot to the time of its release) appeared on the screen. It disappeared 
after a forced delay of 1.1 s and the cursor reappeared in the center of the disk. The 
participant pulled the second dot in the same way as the first dot. We used 10 different 
pairs of dots, each presented 20 times. Each pair of dots was of equal distance from 
the center of the black disk, but of a different color and a different angular location 
(Supplementary Fig. 3b). The order of presentation was pseudorandom such that 
in every consecutive group of 10 trials all pairs appeared. Decision time in a trial is 
defined as the time elapsed from cursor appearance to the beginning of the dragging 
of the first dot (the dragging of the second dot is not a ‘choice’ because after dragging 
the first dot, only a single dot remains, see Supplementary Fig. 3a). The positions of 
the chair, screen and mouse pad were fixed and identical for all participants in order 
to minimize heterogeneity between participants.

A base monetary compensation was given to all participants for their 
participation. An additional bonus fee was given based on dragging times in order 
to encourage good performance throughout the experiment.

In the DDM analysis we excluded trials, in which the reaction time was longer 
than 3 s. This excluded 2% of the motor trials.

Sample sizes. We had little a-priori basis for determining the sample size because 
we did not know what would be the shape of the distribution of ICBs. We 
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hypothesized that the ICB distribution can be estimated from 100 tasks. Therefore, 
we used 100 participants in the bisection task. The number of trials per task was 
limited by the total duration of the experiment. To avoid fatigue and to ensure 
compliance we aimed at limiting the total length of the experiment to no more 
than approximately 30 minutes. This implied that we could not use more than 
approximately 240 trials. To avoid sequential effects and detection, only 20 of them 
were impossible vertical bisection trials.

To compare the distributions of ICBs in the bisection and motor tasks, we 
used the same number of impossible trials in the motor task (20 trials). Because 
in the motor task each trial is an ‘impossible’ trial, we were able to test ICBs in 10 
different tasks (pairs of dots) for each participant. This allowed us to use only 20 
participants in this task, while doubling the total number of tasks.

Importantly, all of the sample sizes were predetermined and not altered based 
on the results.

The Poisson model. We consider two populations of neurons, denoted by U 
and D, representing choices Up and Down (Fig. 3a). Each population consists 
of N/2 independent Poisson neurons. The stimulus-dependent feedforward 
inputs to neuron i (i 2 1; ¼ ;N=2f g

I
) in population α (α 2 U ;Df g

I
) is given by: 

μαi ¼ kα  ΔL=Lþ zαi
I

, where kU ¼ �kD ¼ k
I

 is a parameter and zαi
I

 is stimulus- 
and trial-independent, drawn independently once from a zero-mean Gaussian 
distribution with variance σ2, zαi

� �
¼ 0

I
, zαi

� 2D E
¼ σ2

I

, where 〈…〉 denotes average. 
The firing rate ναi

I
, different for each neuron, is

ναi ¼ �ν  eγμαi ð1Þ
where �ν

I
 is a baseline firing rate and γ is the gain28. Due to the exponential transfer 

function and the normal distribution of inputs, the firing rates are log-normally 
distributed. In each trial, the cumulative number of spikes, nU(t) and nD(t), emitted 
by populations U and D up to time t in a trial is counted (Fig. 3a). A decision is 
made at time t*

I
, at which the absolute value of the difference in the numbers of 

spikes, Δn tð Þj j ¼ nU tð Þ � nD tð Þj j
I

, reaches a given threshold θ ¼
ffiffiffiffi
N

p
 ~θ

I
, where ~θ

I
 

is a parameter.
For N ≫ 1 and neglecting the threshold effect, the difference in spike count 

at time t is given by Δn tð Þ  N Δν  t;Σν  tð Þ
I

, where Δν ¼
P
i
νUi �

P
i
νDi

I

 and 

Σν ¼
P
i
νUi þ

P
i
νDi

I

. Because N ≫ 1, both Δv and Σν
I

 are normally distributed:

Δν  N N�νe
γ2σ2

2 sinh γk
ΔL
L

� �
;N�ν2 eγ

2σ2 � 1
� �

eγ
2σ2 cosh 2γk

ΔL
L

� �� �

Σν  N N�νe
γ2σ2

2 cosh γk
ΔL
L

� �
;N�ν2 eγ

2σ2 � 1
� �

eγ
2σ2 cosh 2γk

ΔL
L

� �� �

Note that Δn and Δv are different stochastic processes: the stochasticity of Δn 
stems from trial-by-trial variability, conditioned on the firing rates of the neurons. 
By contrast, the stochasticity of Δv reflects heterogeneity in these firings rates 
across different realizations of the decision-making network.

The standard deviation of the distribution of Σν
I

 is of O
ffiffiffiffi
N

p� 

I
, whereas its mean 

is O(N) even when ΔL→0. Therefore, in the limit N ≫ 1, Σν � N�νe
γ2σ2

2 cosh γk ΔL
L

� �

I
.  

By contrast, in the regime in which ΔL=Lj j ¼ O 1=
ffiffiffiffi
N

p� 

I
, the mean and standard 

deviations of the distribution of Δv are comparable, both are O
ffiffiffiffi
N

p� 

I
.

The probability of an Up decision is obtained by solving a first-passage 
problem, yielding

p  Pr Upð Þ ¼ 1þ e�2Δν
ffiffiffi
N

p
~θ=Σν

 �1
¼ 1þ e

�2 Δνffiffi
N

p  ~θ

νcosh γkΔLLð Þeγ
2σ2
2

0
@

1
A

�1

ð2Þ

Substituting the dependence of Δv on ΔL in equation (2) yields the 
psychometric curve. In particular, when the two populations are symmetric, 
Δν ¼ N�νe

γ2σ2

2 sinh γk ΔL
L

� �

I
, and

p ¼ 1þ e�2
ffiffiffi
N

p
~θtanh γkΔLLð Þ �1

 1þ e�2
ffiffiffi
N

p
eθγkΔLL

 �1

When the two populations are drawn from the same distribution (but are not 
completely identical), the psychometric curve is horizontally shifted relative to the 
case of identical populations.

To compute the distribution of ICBs, we consider the case in which the external 
input is symmetric, ΔL = 0 and thus Δν  N 0;N�ν2 eγ

2σ2 � 1
� �

 eγ2σ2
� �

I
. After a 

change of variables,

Pr pð Þ ¼ 1
p  1� pð Þ 

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π eγ2σ2 � 1ð Þ~θ2

q e
� log pð Þ�log 1�pð Þð Þ2

8 eγ
2σ2 �1ð Þ~θ2

Because ICB = 2p − 1,

Pr ICBð Þ ¼ 2

1� ICB2 
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8π eγ2σ2 � 1ð Þ~θ2
q e

�
log 1þICB

1�ICBð Þð Þ2
8 eγ

2σ2 �1ð Þ~θ2 ð3Þ

The corresponding distribution of decision times is computed by averaging the 
drift-conditioned distribution of first-passage times over the distribution of Δv, 
yielding17,32,33:

f tð Þ ¼ π
2θ2

νe
γ2σ2

2 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þtνe

γ2σ2
2 ðeγ2σ2�1Þ

q exp 1
2

~θ
2

tνe
γ2σ2
2 þ 1

ðeγ2σ2 �1Þ

0
@

1
A

´
P1
m¼1

m sin πm
2

� 
exp �t m

2π2

8
ν
~θ
2 e

γ2σ2

2

 
ð4Þ

Two points are worthwhile noting:

 (1) The neuronal gain parameter γ affects Pr(p) through the term eγ
2σ2 � 1

� �
~θ2

I
.  

This implies that considering the distribution of ICBs, increasing the gain is 
effectively equivalent to increasing the threshold parameter ~θ

I
, and thus is 

likely to broaden the distribution of ICBs.
 (2) The assumption of a lognormal distribution of firing rates is not essential to 

our analysis. For a general distribution of firing rates, equation (3) becomes

Pr pð Þ ¼ λffiffiffi
π

p
p 1� pð Þ  e

� λ log pð Þ�log 1�pð Þð Þð Þ2

and

Pr ICBð Þ ¼ 2λffiffiffi
π

p ð1� ICB2Þ  e
� λlog 1þICB

1�ICBð Þð Þ2 ð5Þ

where λ ¼ E ναi½ ffiffi
8

p
~θ

ffiffiffiffiffiffiffiffiffi
V ναi½ 

p

I

 and E ναi
� �

I
 and V ναi

� �

I
 are the mean and variance of the 

distribution of the firing rates in the impossible trials.
The parameters used in all simulations are �ν ¼ 1:26Hz

I
, γ = 1 k = 0.133 and 

σ2 = 1. For ΔL = 0, the average and standard deviation firing rate are 2.1 Hz and 
2.7 Hz. These numbers are compatible with experimental data in the cortex26,56. 
The dependence of the width of the ICB distributions on the model parameters are 
depicted in Supplementary Fig. 4.

The spiking network model. The model is a recurrent network of N leaky-
integrate-and-fire (LIF) neurons, NE = 0.8N excitatory and NI = 0.2N inhibitory 
(the superscript denotes neuron type, excitatory or inhibitory).

Single neuron dynamics. The sub-threshold dynamics of the membrane potential, 
Vα
i tð Þ
I

, of neuron i in population α i ¼ 1; ¼ ;Nα;α ¼ E; Ið Þ
I

 follow:

τm
dVα

i tð Þ
dt

¼ � Vα
i tð Þ � VL

� �
þ Iαrec;i tð Þ þ IαFF;i tð Þ þ Iαb

where τm is the neuron membrane time constant, VL is the reversal potential of the 
leak current. Inputs to the neuron are modeled as currents: Iαrec;i tð Þ

I
 is the recurrent 

input into neuron (i,α), due to its interactions with other neurons in the network, 
IαFF;i tð Þ
I

 is the feedforward input into that neuron elicited upon presentation of the 
stimulus, and Iαb

I
 is a background feedforward input, independent of the stimulus, 

identical for all the neurons and constant in time. These subthreshold dynamics are 
supplemented by a reset condition: if at t ¼ tαi

I
 the membrane potential of neuron 

(i,α) reaches the threshold, Vα
i tα�i
� �

¼ VT

I
, the neuron fires an action potential and 

its voltage resets to Vα
i tαþið Þ ¼ VR

I
.

The feedforward input. Each population, excitatory or inhibitory, consists of two 
types of neurons, namely U- and D-selective. In the absence of stimulus, the 
feedforward input IαFF;i tð Þ ¼ 0

I
 for all the neurons. Upon presentation of a stimulus 

for which ΔL > 0, IαFF;i tð Þ
I

 into U-selective neurons is stronger than IαFF;i tð Þ
I

 into D-
selective neurons. The opposite is true when ΔL < 0. Specifically, we take:

I αFF;iðtÞ ¼ I α0 þ ε
ΔL
L

I α1

where Iα0 and Iα1
I

 are constants and positive and ε characterizes the selectivity of 
the neuron: ε = +1 for U neurons and ε = −1 for D neurons. We denote the set of 
U-selective (or D-selective) neurons in population α = E,I by Uα (or Dα). Neuron 
i; αð Þ 2 Uα

I
 if i ¼ 1¼ Nα

2
I

 and i; αð Þ 2 Dα

I
 if i ¼ Nα

2 þ 1¼Nα

I
.

The recurrent input. The connectivity has two components. One is functionally 
specific and the other is not. The non-specific component is fully random (Erdös-
Renyi graph) and does not depend on the selectivity of the pre- and post-synaptic 
neurons. The corresponding Nα × Nβ connectivity matrix, Cαβ

NS
I

, is such that 
Cαβ
NS;ij ¼ 1
I

 with probability K/Nβ and Cαβ
NS;ij ¼ 0
I

 otherwise, where K is the average 
number of non-specific inputs that a neuron receives from neurons in population 
β. The strength of the non-specific connections depends solely on α,β yielding: 
JαβNS;ij ¼ J αβNS C

αβ
NS;ij

I
 where J αENS >0

I
 (excitation) and J αINS<0

I
 (inhibition).

The competition between the U and the D selective neurons is mediated by an 
additional set of connections. These connections are specific and are much less 
numerous but stronger than the unspecific ones. The corresponding connectivity 
matrices, Cαβ

S;ij

I
, are such that:
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 1. CαE
S;ij ¼ 0
I

 that is, we assume no specific excitation.
 2. CαI

S;ij ¼ 0
I

 if i and j have the same selectivity properties.
 3. CαI

S;ij ¼ 1
I

 with probability 2
ffiffiffiffi
K

p
=NI

I
 if i and j have different selectivity properties.

Therefore, each neuron (excitatory as well as inhibitory) receives, on average, ffiffiffiffi
K

p
I

 connections from inhibitory neurons whose selectivities are different from its 
own and on average, K non-selective inhibitory connections.

The strength of the specific connections depends solely on the neurons’ type 
JαIS;ij ¼ JαIS CαI

S;ij

I
; g ¼ JαIS =JαINS
I

.
The total current into neuron (i,α) due to the recurrent interactions is 

Iαrec;i tð Þ ¼
P
j;β

JαβS;ij þ JαβNS;ij

 
Sαβj tð Þ

I

where Sαβi tð Þ
I

 are synaptic variables, which follow 

the dynamics τS
dSαβi tð Þ

dt ¼ �Sαβi tð Þ þ
P
ftβj g

δ t � tβj
 

I

.

Here, τS is the synaptic time constant (assumed to be the same for all synapses) 
and the sum is over all spikes emitted at times tβj < t

I
.

Decision-making and decision criterion. In response to the sensory stimulus, the 
activities of the U-selective and D-selective neurons change differently (Fig. 5d). 
We compute at every time step the population-averaged activity of all the excitatory 
neurons in the set a, (a-selective), denoted by νa; a 2 U ;Df g

I
, by convolving the 

spike times with an exponential filter with a time constant of 50 ms. Decision is 
based on the ratio: νU�νD

νUþνD

I
. If νU�νD

νUþνD
>ϕ

I
, the decision provided by the network is 

that upper segment is longer than the lower one, whereas for νD�νU
νDþνU

>ϕ

I
 it is the 

opposite, where ϕ > 0 is the decision threshold.
The ability of the network to make a decision depends on the network 

parameters. In particular, it depends on the parameter g, which characterize the 
strength of the competition between U and D neurons, on the value chosen for the 
threshold ϕ as well as on the stimulus parameters, �Iα0

I
 and �Iα1

I
.

Numerical integration. The dynamics of the model circuit were numerically 
integrated using the Euler method supplemented with an interpolation estimate 
of the spike times57. In all simulations the integration time step was 0.1 ms. We 
verified the validity of the results by performing complementary simulations with 
smaller time steps.

Model parameters. The parameters used in all the simulations (except 
Supplementary Fig. 8, see below) are: VL = −60 mV; τm = 10 ms; VT = −40 mV; 
VR = −60 mV. Unless otherwise specified the interaction strengths are: 
JEE ¼ 3mV ms; JIE ¼ 20mV ms; JEI ¼ �15mV ms; JII ¼ �20mV ms;
I

 all 
with τS = 3 ms, corresponding to post-synaptic potentials of amplitude: 0.18 mV, 
1.2 mV, −1.2 mV, respectively; I Eb ¼ 2:4mV

I
, I Ib ¼ 1:6mV
I

, I E0 ¼ 2:4mV
I

,  
I I0 ¼ 1:6mV
I

, I E1 ¼ 2:67mV
I

, I I1 ¼ 2:67mV
I

. The total number of neurons and 
average non-specific connectivity is N = 40,000, K = 400, ϕ = 0.4. The value of g 
in all Figures except Figs. 6 and 7a,b (in which g was systematically studied) is g = 3.

The single-neuron parameters and the average number of inputs per neuron 
are as in42. The network size and fraction of inhibitory neurons are as in29. The 
strengths of E→E and E→I connections, as well as the unstructured components 
of I→E and I→I interactions are as in42. The corresponding size of the PSPs have 
physiological reasonable values45.

The background external inputs as well as the E→I connection strength were 
chosen to obtain spontaneous and evoked firing rates that are comparable with the 
experimental data. The decision threshold was chosen so that decision occurs only 
when the differences in the firing rates of the two populations is comparable to the 
experimentally observed15.

To test the robustness of the model we simulated impossible trials in networks 
with different parameters. The results are depicted in Supplementary Fig. 8. 
Supplementary Fig. 8a depicts the ICB distribution of Fig. 6b, center (g = 3). 
Supplementary Fig. 8b depicts the ICB distribution of networks with N = 80,000; 
Supplementary Fig. 8c depicts the ICB distribution of networks, in which the 
ratio of excitatory and inhibitory neurons is 1:1, rather than the 4:1 of the original 
network. In Supplementary Fig. 8d, the values of JEE, JIE, JEI and JII were doubled.

DDM analysis. According to the DDM13–15,17,18,58–60, noisy evidence in favor of 
choosing each of the two alternatives is integrated over the course of the trial. The 
difference in evidence, a quantity known as the decision variable, is then computed. 
Mathematically, dx=dt ¼ Aþ ξ

I
, where x is the decision variable, A is the drift 

rate, t is time within the trial and ξ denotes white noise such that E ξ tð Þ½  ¼ 0
I

 
and E ξ tð Þξ t0ð Þ½  ¼ δ t � t0ð Þ

I
. In the free-response version of the DDM, which has 

proven useful for modeling choices even when the stimulus is presented for a fixed 
duration61–63, a decision is made once the decision variable reaches one of two 
decision thresholds, 0 or a > 0. The initial condition is set to x t ¼ 0ð Þ ¼ z  a

I
,  

where 0 < z < 1.
We focus on the impossible trials in which ΔL = 0. Evidence for A ≠ 0 in 

those trials is interpreted as drift bias; evidence for z ≠ 0.5 is interpreted as initial 
condition bias (IC bias). The two bias mechanisms exhibit distinct patterns of 
dependence of bias on reaction-times. The effect of ‘IC bias’ is mostly prominent 
early in the trial and it therefore predicts that faster decisions are more biased than 
slower ones. By contrast, ‘drift bias’ affects evidence accumulation throughout the 

trial and the resulting bias affects both fast and slow decisions19,20. Therefore, it is 
possible to dissect the two mechanisms by incorporating the decision times in the 
analysis.

We fit four different variants of the DDM to the behavioral data and 
simulations. (1) A baseline DDM with A = 0 (because we consider only the 
impossible trials) and z = 0.5. This model has a single parameter, the decision 
threshold, a. To fit the model to the data, a second parameter, which accounts for 
the component of the reaction-time that is independent of the decision process, 
Ter, is added61,64,65. By construction, there are no ICBs in this model and it was used 
as a baseline for comparison with the other three models. (2) In the ‘IC bias’ DDM 
A = 0, as in the baseline DDM. However, by contrast, z is estimated from the data, 
this is in addition to a and Ter. (3) In the ‘drift bias’ DDM, we assumed that z = 
0.5 and estimated A, a and Ter. (4) In the ‘IC + drift bias’ DDM, both z and A were 
estimated from the data, in addition to a and Ter.

Hierarchical Bayesian estimation of the DDM parameters. The dataset of the vertical 
bisection task includes 20 impossible trials performed by 100 participants. The motor 
task includes 10 datasets (each pair of dots was considered a task and was analyzed 
separately). Each task was tested on 20 participants, each performing 20 decisions. 
The recurrent network simulations included 8 datasets, each corresponding to a 
different level of specific inhibition. Each of these dataset consisted of the responses 
made by 200 networks, each tested on 500 impossible trials.

We fit each of the four DDM variants to each of the datasets using the HDDM 
Python toolbox, which allows for the construction of Bayesian hierarchical 
DDMs66. HDDM uses Bayesian Markov-chain Monte Carlo sampling for 
generating posterior distributions over both subject-level and group-level model 
parameters, rather than point estimates of only subject-level parameters. To 
accomplish this, HDDM uses informative prior distributions on the group-
level parameters, that constrain the parameters to a plausible range given past 
experiments66,67. As a result, constraining the parameter estimates for individual 
subjects by group-level inference leads to a better recovery of the true parameters, 
especially with few trials per subject66.

Our analysis required three minor modifications to the code: (1) in the 
unbiased and ‘IC bias’ DDMs, we posit that A = 0, which corresponds to an 
unbiased drift rate. This is because in the bisection task and the recurrent network 
simulations we only analyzed the case of ΔL = 0. This constraint was lifted in 
the ‘drift bias’ and ‘IC + drift bias’ DDMs, in which A was a free parameter. (2) 
In the HDDM fitting procedure, the estimation of each of the model parameters 
is constrained by the informative priors relevant for the group level statistics 
of the sample’s parameter. Specifically, it is assumed that the mean drift rate 
is drawn from a normal distribution with a positive mean, m = 2, conceivably 
because behavior is typically studied in possible trials, in which performance 
is above chance. Because in the impossible trials there is no a priori reason to 
assume that one action is more likely than the other, we modified the code such 
that m = 0. Notably, comparable posteriors are obtained also when using m = 2 
(not shown). (3) The assumptions regarding the width of the prior distribution 
of initial conditions can constrain the values of the estimated initial conditions 
in the HDDM fitting procedure, thus limiting the extent to which the initial 
conditions can capture the ICBs in the DDM. Therefore, we considered a wider 
prior distribution of initial conditions, by increasing the standard deviation of σz 
in66 from 0.05 to 5. Notably, when keeping the standard deviation of σz at 0.05, the 
contribution of initial conditions to the ICBs in the resultant fitted DDMs is even 
smaller (not shown). As is standard in the HDDM fitting procedure, we allowed 
5% of responses to be considered ‘contaminants’64, that is, trials which do not 
follow the DDM dynamics (for example, due to attentional lapses).

In order to estimate the posteriors, we ran 12 separate Markov chains with 
40,000 samples each. Of those, the first half was discarded as burn-in and to reduce 
sample autocorrelations, 4/5 of the remaining samples were discarded for thinning. 
This left 4,000 samples per chain. We computed the R̂

I
 Gelman-Rubin statistic, to 

assess model convergence by comparing between-chain and within-chain variance 
of each posterior distribution. For all datasets and all models, the R̂

I
 of all group-

level posteriors (0.9998–1.01) and that of the observer-level posterior (0.9998–1.035) 
indicated a proper convergence68,69. All chains were concatenated for further analyses, 
resulting in 48,000 samples per model, from which each posterior was estimated.

Model comparison using the DIC. Using the HDDM Python toolbox66, we also 
computed the Deviance Information Criterion (DIC70) and used it to compare the 
different variants of the DDM. The DIC compares models by the goodness of fit, 
while penalizing for model complexity. The lower the DIC the better the model 
(see ref. 70). Because of the nondeterministic nature of hierarchical modeling, we 
also computed confidence intervals of the ΔDIC (DIC of the variant of the DDM 
relative to the DIC of the baseline, unbiased DDM). For the vertical bisection task 
and the numerical simulations of the recurrent network, the s.e.m. of the ΔDIC 
was estimated by repeating the fitting procedure and DIC analysis 3 times. For the 
motor datasets, the ΔDIC of each biased DDM variant was obtained separately for 
each pair of dots, and the s.e.m. was then evaluated over all 10 pairs.

Posterior-based simulations. The quality of the DDM models can also be evaluated 
by comparing the behavior of the decision-maker to the behavior predicted by the 
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estimated posteriors. Specifically, we simulated responses (choices and reaction 
time) using the posteriors obtained from the HDDM procedure for each dataset 
separately. For all datasets, the simulated probabilities of choice well-matched the 
observed ones for the ‘drift bias’ and for the ‘IC + drift bias’ DDM variants but not 
for the ‘IC bias’ DDM (Supplementary Fig. 9a). All models provided reasonable fits 
of the normalized distribution of reaction times to the data (Supplementary Fig. 9b).

Relative contributions of the IC bias and drift bias to the ICBs in the ‘IC + drift bias’ 
DDM. Here we describe the procedures underlying Figs. 1d, 2d and Supplementary 
Fig. 7. It is well-known that in the DDM17,32

Pr 0Up0ð Þ ¼ 1
1þ e�Aa

þ 1� eAa 1�2zð Þ

eAa � e�Aa
ð6Þ

To dissect the relative contributions of the IC and drift biases to the ICBs, we 
computed the average parameters A, a and z from the estimated posteriors of each 
observer in the ‘IC + drift bias’ DDM. We then computed the predicted PrðUpÞ

I
 

in three conditions: all estimated parameters (black X marks), estimated initial 
conditions z � a

I
 and A = 0 (purple squares) and estimated product, Aa, of drift with 

the threshold, while assuming z = 0.5 (green circles).

Relative contribution of idiosyncratic thresholds to the ICBs. According to equation 
(6), the drift bias A and the threshold a contribute to the ICB via their product Aa. 
Importantly, while the drift parameter, A, can be positive or negative, the threshold 
parameter, a, is strictly positive. Therefore, the direction of the bias is necessarily 
determined by the drift A. Nevertheless, idiosyncrasies in a can also contribute to 
the heterogeneity in the bias between the decision makers. We studied the relative 
contributions of these two parameters in the framework of the ‘drift bias’ DDM, in 
which the product Aa is the sole contributor to the ICBs. For each decision maker 
we computed the posterior-averaged values of a and A. We then used equation 
(6) to predict the ICBs assuming that all decision-makers are characterized by the 
same (average) threshold or the same (average) drift ( Aj j

I
). In all datasets we found 

that the contribution to the ICBs of heterogeneity in the thresholds is small relative 
to that of the drift (Supplementary Fig. 10).

The Poisson model is equivalent to the drift bias DDM. Comparing equations 
(2) and (6), we note that for a ¼ 2

ffiffiffiffi
N

p
 ~θ

I
, A = Δv/Σv and z = 0.5, equation (6) is 

equivalent to equation (2).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.
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any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets, 
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Sampling strategy Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size 
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Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them, 
indicating whether exclusion criteria were pre-established.

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to 
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were 
controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why 
blinding was not relevant to your study.
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Field work, collection and transport
Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water 
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Access and import/export Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and 
in compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing 
authority, the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods
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Materials & experimental systems
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Methods
n/a Involved in the study
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Antibodies used Describe all antibodies used in the study; as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the 
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.
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Policy information about cell lines

Cell line source(s) State the source of each cell line used.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.
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Palaeontology
Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the 

issuing authority, the date of issue, and any identifying information).

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), 
where they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new 
dates are provided.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals For laboratory animals, report species, strain, sex and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field; report species, sex and age where possible. Describe how animals 
were caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if 
released, say where and when) OR state that the study did not involve wild animals.

Field-collected samples For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature, 
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or 
guidance was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants
Policy information about studies involving human research participants

Population characteristics Perceptual discrimination experiment: 51 males, 49 females; mean age = 39 years, max = 71 years, min = 22 years; all 
Mechanical Turk’s Masters, located in the United States of America. Motor experiment: 13 males, 7 females; mean age = 25 
years, max = 41 years, min = 19 years; all students recruited using on-campus advertising, located in Israel. All participants 
(n=120) reported normal or corrected to normal vision and no history of neurological disorders that could have been otherwise 
accounting for biased responses (e.g. pseudoneglect).

Recruitment Perceptual discrimination experiment: recruitment was based on the online labor market Amazon Mechanical Turk, all of whom 
are Mechanical Turk’s Masters, located in the United States of America.  
Motor task: recruitment was based on an on-campus advertising directed to dextrals students. This, in order to avoid 
handedness accounts for heterogeneity in the motor task (irrelevant for the vertical perceptual task).

Ethics oversight The Hebrew University Committee for the Use of Human Subjects in Research.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.

Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
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Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.
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For "Initial submission" or "Revised version" documents, provide reviewer access links.  For your "Final submission" document, 
provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session 
(e.g. UCSC)

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to 
enable peer review.  Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of 
reads and whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone 
name, and lot number.

Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and 
index files used.

Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold 
enrichment.

Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a 
community repository, provide accession details.

Flow Cytometry
Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a 
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the samples 
and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell 
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging
Experimental design

Design type Indicate task or resting state; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial 
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used 
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across 
subjects).
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Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, 
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, 
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types 
used for transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. 
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and 
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first 
and second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether 
ANOVA or factorial designs were used.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte 
Carlo).

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial 
correlation, mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, 
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, 
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation 
metrics.
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