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Experiments in recent years have provided a direct link between 
synaptic changes and memories: memory formation has been 
shown to be correlated with a transient increase in the density 

of spines (a proxy for synapse formation1–4). Moreover, the specific 
erasure of the spines formed during training results in a specific 
deletion of the corresponding memory5. If the patterns of excit-
atory synaptic connections are the physical correlate of long-term 
memories in the neocortex6 then the lifetime of stored memories is 
expected to be directly tied to the lifetime of the underlying synaptic 
changes. Puzzling, therefore, is the observation that in the absence 
of explicit learning, excitatory connectivity is highly dynamic7–11. 
In fact, the rate of learning-driven spine formation and elimina-
tion is not much higher than the ‘spontaneous’ rate observed during 
basal conditions6,12,13. Cortical volatility manifests not only in the 
high rate of spine turnover but also in changes in the sizes of the 
spines8,14, indicative of changes in the efficacies of the correspond-
ing excitatory synapses15.

These observations raise a fundamental question. How can 
memories be maintained in the presence of the substantial ongo-
ing excitatory volatility? To address this question, we quantify the 
remodeling of cortical excitatory connectivity and use a cortical 
network model to study the effect of this remodeling on the pat-
terns of firing rates. We show that these activity patterns are pri-
marily determined by the inhibitory connectivity, even though the 
majority of neurons and synapses in the model are excitatory16. We 
also show that the inhibitory network can store many more memo-
ries than its excitatory counterpart, despite being endowed with a 
smaller number of synapses. These two results are a direct conse-
quence of the differences in the firing-rate distributions of excit-
atory and inhibitory neurons17. Finally, we show that, in contrast to 
spontaneous remodeling, selective learning-like excitatory plastic-
ity2–5 has a substantial effect on the pattern of network activity by 
transiently disrupting the balance between excitation and inhibi-
tion. Taken together, our results imply that excitation and inhibi-
tion play fundamentally different roles in controlling the stability of 
activity patterns in the cortex. The inhibitory network, rather than 

providing ‘blanket inhibition’18, has the potential to control the sta-
bility of memory patterns for long periods of time.

Results
The volatility of spines and network activity. We imaged 3,688 
dendritic spines of eight layer V pyramidal neurons in the mouse 
auditory cortex in six imaging sessions at an interval of 4 d9,15 (see 
Methods). Individual dendritic spines exhibited substantial volatil-
ity. Less than half of the spines present in the first imaging session 
were still present in the last imaging session9. Moreover, even the 
‘stable’ spines, those present in all imaging sessions, were highly vol-
atile, such that over the course of 20 d, >​70% of the spines changed 
their size by at least 50%15. Nevertheless, density and size distribu-
tions of the spines remained stationary across sessions. Previous 
studies have reported a wide range of turnover rates, and the rates 
we measured are at the higher end. Differences between rates have 
been attributed to cortical region, age of the animal, and differences 
in imaging techniques and analysis3,12,19,20.

We constructed a biologically constrained model of a cortical 
area composed of 80% excitatory and 20% inhibitory randomly 
and sparsely connected spiking neurons (Fig. 1a and Methods). 
In addition to these connections, excitatory (E) and inhibitory 
(I) neurons also received feedforward input, constant in time and 
identical for all neurons in the population (E and I). Each recurrent 
excitatory to excitatory (E →​ E) connection in the network model 
is associated with a single spine measured in the first imaging ses-
sion, and we use its size as a measure of the efficacy of the corre-
sponding synapse (see Methods)20. The efficacies of the remaining 
synapses E →​ I, I →​ E, and I →​ I are drawn from log-normal distri-
butions whose parameters are taken from cortical measurements21 
(Supplementary Table 1).

The model captures basic features of cortical dynamics. First, it 
operates in the asynchronous regime, in which spiking is temporally 
irregular (average coefficients of variation for the excitatory and 
inhibitory neurons are 1.07 and 1.22, respectively; Fig. 1b). Second, 
the distributions of firing rates of the excitatory and inhibitory 
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neurons are approximately log-normal (Fig. 1c), with means and 
variances that are comparable with those measured in the cortex17,22. 
These two features of the activity are a direct result of the fact that in 
such neuronal circuits, in which neurons are recurrently connected 
via strong synapses, the firing rates of the excitatory and inhibitory 
populations adjust dynamically and the time-averaged input to the 
neurons is subthreshold23,24. In this balanced excitation–inhibi-
tion regime, spiking is driven by temporal fluctuations of synaptic 
inputs, which results in Poisson-like timing of action potentials. The 
heterogeneity in the firing rates of the otherwise identical neurons 
results from the heterogeneity in their random synaptic inputs. 
Because the number of presynaptic inputs is large and these inputs 
are only weakly correlated, the distributions of time-averaged inputs 
onto the excitatory and inhibitory neurons are approximately nor-
mal. As in a noise-driven escape process, the firing rate of a neuron 
exponentially depends on its time-averaged input. This, combined 
with the normal distribution of inputs, results in a log-normal dis-
tribution of firing rates25.

To study the consequences of the experimentally observed vola-
tility of E →​ E connections, we generate six networks corresponding 
to the six consecutive imaging sessions, such that each E →​ E syn-
apse in a network is matched to a single spine in the corresponding 
imaging session (Fig. 2a). Each formation, elimination, or change 
in the size of a spine manifest in the model as the formation, elimi-
nation, or change in the efficacy of the corresponding synapse 
(Methods).

Because the density and the size distribution of the spines were 
similar across sessions, the distributions of firing rates in the six net-
works are almost identical (Fig. 2b). We expected that the consid-
erable changes in E →​ E connectivity (illustrated for ten randomly 
chosen pairs of excitatory neurons in Fig. 2a) would result in sub-
stantial changes in the firing rates of the individual neurons. This 

is because the specific firing rates of neurons reflect the particular 
realization of their synaptic inputs, and E →​ E connections constitute 
half of the synapses in our model. To our surprise, the similarities 
between the firing patterns are remarkably high, as demonstrated 
by the similarity of the firing rates of specific neurons in the six 
networks (Fig. 2b). The stability of network activity is quantified in 
Fig. 2c, where we plot the autocorrelogram of the matrices of E →​ E 
connectivity, together with the autocorrelograms of the vectors of 
firing rates of the excitatory and inhibitory neurons.

Sensitivity of network activity to various types of synaptic remod-
eling. The experimentally observed volatility did not correspond to a 
complete rewiring of the E →​ E connectivity. We wondered whether 
the remaining correlations in the E →​ E connectivity were sufficient 
to support the stability of the firing pattern. To test this, we remove 
all these residual correlations by generating a new E →​ E connec-
tivity matrix with the same statistical properties. Unexpectedly, we 
find that even complete rewiring of the E →​ E connectivity has only 
a modest effect on the pattern of network activity (Fig. 3).

A complete rewiring of the network will necessarily result in 
vanishing correlation coefficients of the firing rates. Therefore, 
E →​ I, I →​ E, and/or I →​ I rewiring play a disproportionally large 
role in determining the firing pattern of the network. Indeed, we 
find that while the effect of rewiring of the E →​ I synapses is also 
modest (Fig. 3), the pattern of activity is much more sensitive to 
changes in the inhibitory synapses (Fig. 3). Particularly remarkable 
is its sensitivity to the rewiring of I →​ I connections, despite the fact 
that they constitute only 6% of the total number of connections in 
the network model.

To gain insight into the striking differential sensitivity of the pat-
tern of firing rates to excitatory and inhibitory rewiring, we consider 
the network from the perspective of a single postsynaptic excitatory 
neuron, innervated by presynaptic excitatory and inhibitory neu-
rons (Fig. 4a). Consider two synapses in this feedforward network. 
Trivially, swapping their efficacies will not change the excitatory 
input to the postsynaptic neuron if the two synapses have identical 
efficacies. Similarly, the swapping of their efficacies, even if they are 
different, will not affect the average input as long as the firing rates 
of the two corresponding presynaptic neurons are equal. In other 
words, the more different the efficacies of the two synapses are and 
the more different the firing rates of the corresponding presynaptic 
neurons are, the larger the expected effect of synaptic swapping on 
the postsynaptic firing rate is. Now we generalize this intuition to a 
complete rewiring of E →​ E connections, which in a large network 
is asymptotically equivalent to the random permutation of all E →​ E 
connections. The larger the variance of the distribution of E →​ E 
synaptic weights and the larger the variance of the distribution of 
firing rates of excitatory presynaptic neurons, the more sensitive the 
firing rate of the postsynaptic neuron to E →​ E synaptic rewiring 
is. A similar argument can be made when considering I →​ E rewir-
ing. A more precise analysis reveals that in the sparse network, the 
relevant parameters determining the effect of synaptic rewiring are 
the number of connections, the mean of the distribution of squared 
synaptic efficacies (sum of the squared mean and variance of the 
distribution), and the mean of the distribution of squared firing 
rates (see Methods).

Considering cortical parameters21, the distributions of excitatory 
and inhibitory efficacies onto the excitatory neurons (E →​ E, I →​ E) 
are comparable (Supplementary Table 1). By contrast, the mean 
of the distribution of squared firing rates of excitatory neurons is 
substantially smaller than that of the inhibitory neurons (Fig. 1c 
and see Methods). As a result, the effect of excitatory rewiring is 
smaller than that of inhibitory rewiring. In Fig. 4a we plot the dis-
tribution of change in the time-averaged excitatory and inhibitory 
inputs to the postsynaptic excitatory neuron following the rewiring 
of excitatory and inhibitory synaptic connectivity. The fact that the 
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Fig. 1 | The spiking network model. a, A schematic drawing of the network 
of sparsely connected excitatory (blue triangles) and inhibitory (red circles) 
integrate-and-fire neurons. b, Membrane potential traces of randomly 
selected excitatory (blue) and inhibitory (red) neurons. c, The distributions 
of firing rates of the excitatory (blue) and inhibitory (red) neurons 
(estimated from a simulation of 3 min) in linear and logarithmic (inset) 
scales. Black lines are log-normal functions fitted to the (logarithmic) 
histograms (parameters of the fit: excitatory: mean, 1.01 Hz; variance, 
1.03 Hz2; inhibitory: mean, 6.41 Hz; variance, 16.27 Hz2).
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excitatory distribution is narrower than the inhibitory distribution 
implies that E →​ E rewiring has a smaller effect on the postsynaptic 
activity than I →​ E rewiring. Thus, the seemingly innocuous differ-
ence in the distributions of the firing rates of the two populations 
of neurons (well documented in the cortex in vivo17,22) is the major 
determinant of the robustness of the network to excitatory rewir-
ing and its sensitivity to inhibitory rewiring. We repeat this analy-
sis for the inhibitory neurons (Fig. 4b). Because the distributions 
of excitatory and inhibitory efficacies onto the inhibitory neurons 
(E →​ I, I →​ I) are also comparable, the inhibitory neurons are also 
robust against excitatory rewiring and sensitive to inhibitory rewir-
ing. The differential sensitivity of the firing rates of the feedforward 
network neurons to the excitatory and inhibitory inputs is depicted 
in Supplementary Fig. 1.

The intuitive explanation of Fig. 4 is not complete because of 
the recurrent connectivity. The E →​ E rewiring changes the inputs 
to all excitatory (postsynaptic) neurons in the network, which in 
turn are also the presynaptic neurons. In addition, the change in the 
firing rates of the excitatory neurons also changes the input to the 
inhibitory neurons, changing their firing rates and consequently, 
also changing the firing rates of the excitatory neurons that they 
innervate. To better understand the robustness of the recurrent 
network to excitatory rewiring and sensitivity to inhibitory rewir-
ing, we approximate the spiking dynamics using a mean-field rate 
model. In this model, we can analytically compute the change in 
the pattern of activity following a change in the connectivity (see 
Methods). The predictions of this theory (Fig. 3) are qualitatively 
similar to the estimates from the numerical simulations.

To further test the role of the distributions of excitatory and 
inhibitory firing rates in the shaping of network activity, we 
study the dynamics of networks endowed with different levels of 
external inputs to the two populations. This manipulation main-
tains the distributions of synaptic connections while varying the 
firing rates distributions. The results of our mean field analy-
sis are consistent with the intuitive explanation that is based on 
the feedforward network (Fig. 4), namely that sensitivity to the 
rewiring of excitatory synapses indeed increases with the relative 
value of the mean squared firing rates of the excitatory neurons 
(Supplementary Fig. 2).
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Fig. 2 | Volatility in the E → E connectivity has little effect on network activity. a, Top: schematic illustration of six networks, each corresponding to 
the cortical network in one of the imaging sessions. Bottom: the connectivity matrix between ten randomly selected excitatory neurons. Color denotes 
the synaptic efficacy (deep blue, unconnected pair). b, Top: distributions of firing rates of the excitatory (blue) and inhibitory (red) neurons (session 1 
is same as Fig. 1c). Bottom: the firing rates of 20 excitatory (blue) and 20 inhibitory (red) randomly selected neurons. c, Autocorrelograms of the E →​ E 
connectivity matrices (black) and firing-rate vectors of the excitatory (blue) and inhibitory (red) neurons.
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Fig. 4 | Synaptic rewiring in a feedforward network. a,b, The distributions 
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Rewiring and memory. The results presented in Figs. 2 and 3 dem-
onstrate that the pattern of activity in the random network is primar-
ily determined by the inhibitory connections. This result motivated 
us to study the role of inhibition in memory storage. To address 
this question, we embed memory patterns in the network of Fig. 1.  
Each memory consists of a randomly chosen subset of neurons 
(sparseness =​ 0.1), designated to be more active during its recall. 
The excitatory and inhibitory connectivity are constructed using 
parameter-free Hebbian and anti-Hebbian learning rules on those 
patterns, respectively. The resultant probabilities of connections and 
the marginal distributions of synaptic efficacies are asymptotically 
equal (in the limit of a large number of memories) to that of the 
unstructured network (see Methods). Using simulations, we find 
that if the number of embedded memory patterns is not too large, 
the network is endowed with multiple attractors, corresponding to 
the different memory patterns. In Fig. 5a we plot the spike times of 
400 excitatory and 100 inhibitory randomly chosen neurons in a 
network storing 2,000 memory patterns. The transient injection of 
current into the should-be-active neurons of a particular memory 
pattern sets the activity pattern of the network in an attractor state 
that is highly correlated with that memory pattern, which we refer 
to as recall state. Transitions to other recall states are induced by 
transient current injections.

To study the relative contribution of the different synapses to the 
ability of the network to store memories, we first rewire all E →​ E 
connections by resampling them from the same marginal distribu-
tion. This has no substantial effect on the pattern of activity in the 
network (Fig. 5b). By contrast, I →​ I rewiring results in a loss of the 
recall state (Fig. 5b).

Figure 5 demonstrates two things. First, in the balanced network, 
Hebbian and anti-Hebbian excitatory and inhibitory learning rules, 
respectively, can generate multiple attractors that have a substantial 
overlap with encoded memory patterns. Second, I →​ I rewiring is 
more detrimental than E →​ E rewiring for memory maintenance. To 
understand these results, we note that the co-existence of multiple 
attractors requires some form of patterned feedback. In our net-
work, such feedback is mediated synergistically by three different 
synaptic mechanisms:

	(1)	 Hebbian changes in the E →​ E connections result in stronger 
recurrent excitatory connectivity between neurons selective 
for the same memory pattern. Increasing the activity in any of 
these cell assemblies results in a selective positive feedback for 
that assembly, while inhibiting the other assemblies through 
the inhibitory connections.

	(2)	 Positive feedback is also generated by anti-Hebbian changes in 
the I →​ I connections26: inhibitory neurons that belong to the 
same memory pattern inhibit each other less than they inhibit 
neurons that belong to different memory patterns.

	(3)	 Finally, memories are maintained by the positive feedback 
generated by the E →​ I and I →​ E loop. Consider an excitatory 
and inhibitory neuron that belong to the same memory pat-
tern: as a result of Hebbian plasticity, activation of the excita-
tory neuron will activate the inhibitory neuron, which will, in 
turn, preferentially inhibit excitatory neurons not belonging to 
this memory pattern due to anti-Hebbian learning.

All three mechanisms contribute to the initial memory mainte-
nance in Fig. 5. Rewiring the E →​ E synapses (Fig. 5b) disables the 
first mechanism, exposing the contribution of the second and third 
mechanisms to memory maintenance. Similarly, rewiring the I →​ I 
synapses (Fig. 5b) disables the second mechanism. The robustness 
of the recall state to E →​ E rewiring, while being sensitive to I →​ I 
rewiring, indicates that inhibitory plasticity plays a more important 
role than excitatory plasticity in the maintenance of the memories 
in Fig. 5.

To further dissect the relative contribution of each of the three 
mechanisms, we use the mean-field approximation (see Methods) 
to compute the memory capacity αc of the network, the maximal 
number of patterns that the network can maintain, relative to the 
total number of neurons in the network. The results of this anal-
ysis are summarized in Fig. 6. When learning is restricted to the 
E →​ E connectivity (50% of the synapses), αc =​ 0.007. By contrast, 
αc =​ 0.024 when learning is restricted to the I →​ I connectivity, indi-
cating that a much larger number of patterns can be maintained 
using I →​ I plasticity, despite the fact that it involves a substantially 
smaller number of synapses (only 6.25% of the synapses). Strikingly, 
the memory capacity per I →​ I synapse is more than 25 times larger 
than the capacity per E →​ E synapse. Finally, when learning is 
restricted to the E →​ I and I →​ E connections (approximately 44% of 
the synapses), the capacity is αc =​ 0.021. When all three mechanisms 
are used, αc =​ 0.067. Note that this number is larger than the sum 
of all three mechanisms operating individually (0.007 +​ 0.024 +​ 0.0
21 =​ 0.052), demonstrating synergy between the three mechanisms.
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Fig. 5 | Synaptic rewiring and memory in a spiking network model. 2,000 
memory patterns (sparseness: 0.1) were encoded in the integrate-and-
fire network of Fig. 1a using Hebbian and anti-Hebbian learning rules 
on the excitatory and inhibitory synapses, respectively, preserving the 
probabilities of connections and the marginal distribution of synaptic 
efficacies of Fig. 1a (see text and Methods). a, Top: a raster plot of randomly 
selected 400 excitatory (blue) and 100 (red) inhibitory neurons. Patterned 
transient current injections (gray; see Methods) set the activity of the 
network in attractor states that are correlated with the memory patters. 
Bottom: black, teal, and orange traces depict the correlation coefficients of 
the firing rates of the neurons (averaged in bins of 10 ms) with the memory 
patterns corresponding to the current injected at times t =​ 0 s, t =​ 3 s, and 
t =​ 6 s, respectively. b, The same network with the same patterned current 
injection as in a after rewiring the E →​ E synapses (left) and I →​ I synapses 
(right). While E →​ E rewiring has almost no effect on the memory state of 
the network, following I →​ I rewiring, the network no longer maintains the 
memory pattern. Blue and red circles to the left of the raster plots denote 
excitatory and inhibitory populations, respectively. Arrows denote learned 
synaptic connections, whereas their absence denotes connections that 
were randomly drawn from the same marginal distribution.
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Rewiring in the structured network eliminates one of the mecha-
nisms, leaving the other two mechanisms intact. As depicted in Fig. 6,  
E →​ E rewiring has only a small effect on the capacity, reducing it 
from αc =​ 0.067 to αc =​ 0.056. By contrast, I →​ I rewiring reduces 
the capacity to αc =​ 0.036. For comparison, the mean field approxi-
mation predicts that in the 40,000-neuron network of Fig. 5, the 
capacity after E →​ E rewiring is 0.056 ×​ 40,000 =​ 2,240, a number 
larger than the 2,000 patterns embedded in the network. The capac-
ity in this network after I →​ I rewiring is predicted to be smaller 
than 2,000: 0.036 ×​ 40,000 =​ 1,440. Indeed, the recall states in Fig. 5  
are lost following I →​ I rewiring but not following E →​ E rewiring. 
Finally, the rewiring of the E →​ I and I →​ E synapses splits the net-
work into two functionally separate subnetworks, an excitatory net-
work and an inhibitory network, in which the memory capacities of 
each subnetwork is limited by the corresponding mechanism (E →​ E 
for the excitatory subnetwork and I →​ I for the inhibitory network).

The results depicted in Figs. 5 and 6 demonstrate that recall states 
in the structured network are robust to E →​ E rewiring and sensitive 
to I →​ I rewiring. This is qualitatively similar to the robustness and 
sensitivity of the ongoing pattern of activity to these two perturba-
tions, depicted in Fig. 3. As explained in Fig. 4, the differential effect 
of E →​ E and I →​ I rewirings stems from the difference in the distri-
butions of firing rates of inhibitory and excitatory neurons. A simi-
lar mechanism underlies the differential effects of E →​ E and I →​ I 
rewirings on recall states in the structured network. To understand 
why, we initialize the network in one of the memory patterns. For 
this recall state to be maintained over time, the synaptic inputs to 
the active neurons should be larger than those to the quiescent neu-
rons. Both excitatory and inhibitory synapses can contribute to a 
differential input to the active and quiescent neurons. The excitatory 

connections can contribute because by construction, the excitatory 
connections amongst active neurons in a memory pattern are stron-
ger than between active and quiescent neurons. Similarly, the con-
nections from active inhibitory neurons to other active neurons in a 
pattern are weaker than the connections from active inhibitory neu-
rons to quiescent neurons. In both cases, the higher the firing rates 
of the active neurons, the larger the difference is between the inputs 
to the active and quiescent neurons. Excitatory rewiring impairs the 
former contribution, whereas inhibitory rewiring impairs the latter. 
The firing rates of active inhibitory neurons are higher than those 
of active excitatory neurons. The reason for this difference in firing 
rates is that the population-averaged firing rates of the excitatory 
and inhibitory neurons are fixed (determined by balance condi-
tions) in both unstructured and structured networks. A recall state 
is associated with a higher firing rate of the 10% of neurons associ-
ated with that memory pattern and a lower firing rate of all other 
neurons. These firing rates are bounded from below. Therefore, the 
average firing rates of the active neurons is bounded by the popula-
tion average divided by the sparseness (0.1). Because the average 
firing rate of inhibitory neurons is six times higher than that of the 
excitatory neurons, memory capacity is dominated by inhibition.

Excitatory plasticity reconsidered. Our findings that changes in 
excitatory connections have only little effect on network activity 
seem at odds with the fact that plasticity of glutamatergic synapses 
is essential for learning and memory13,27. A possible solution to this 
puzzle is the fact that so far we have only considered manipulations 
to the connectivity that preserve the marginal distribution of con-
nections. By contrast, several studies have demonstrated that learn-
ing is accompanied by a transient increase in the total number of 
spines, specifically in regions that are associated with the task2–5. To 
emulate such learning-induced plasticity in a network of spiking 
neurons (Fig. 7a), we randomly increase the number of E →​ E con-
nections by 20% onto a subset of the excitatory population, which 
we refer to as ‘targeted neurons’. When the fraction of targeted neu-
rons is 20% (Fig. 7a), this manipulation results in a 4% increase 
in the total number of E →​ E connections, a modest change to the 
connectivity, compared with the complete E →​ E rewiring of Fig. 3. 
Naively, this manipulation should have only a minute effect on the 
pattern of firing rates. We observe, instead, a substantial change in 
firing rates of the individual excitatory neurons (Fig. 7b). The aver-
age firing rate of the targeted neurons was 2.05 ±​ 0.02 Hz, substan-
tially larger than that of the nontargeted neurons (0.79 ±​ 0.01 Hz; 
distributions in Fig. 7c).

Next, we considered the effect of an even larger change to the 
connectivity: a 20% increase in the number of E →​ E connections 
onto all excitatory neurons (all excitatory neurons being targeted 
neurons; Fig. 7a). One may expect that a larger change in the num-
ber of connections should result in a larger change to the pattern 
of firing rates. Contrary to this expectation, this manipulation 
has only a small effect on the pattern of neural activity (Fig. 7b). 
Thus, the change in the pattern of firing rates in response to the 
addition of E →​ E connections to a subset of the excitatory popula-
tion is not a monotonically increasing function of the fraction of 
targeted neurons (Fig. 7d and Supplementary Fig. 3). It is maxi-
mal when the fraction of targeted neurons is approximately 20%. 
In that case, the magnitude of change in the pattern of activity is 
many times larger than that following a complete rewiring of the 
E →​ E connections (Fig. 3). The reason for this is that adding con-
nections to some but not all of the neurons disrupts the balance in 
the network28. Because synapses are strong, even a relatively small 
change in their number has a large effect on the excitatory input to 
the targeted neurons. The increased excitatory input is immediately 
balanced by increased inhibitory activity. This increased inhibi-
tion, however, is not restricted to the targeted neurons. As a result 
of the increased inhibitory input, the firing rates of the nontargeted  
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Fig. 6 | Storage capacity using different synaptic types. The memory 
capacity of a network is defined as the number of memories that the 
network can maintain relative to the total number of neurons in the 
network. We used mean-field approximation (see Methods) to estimate 
the memory capacity for random binary memory patterns (sparseness: 
0.1). We used Hebbian and anti-Hebbian learning rules on the excitatory 
and inhibitory synapses, respectively, preserving the probabilities of 
connections and the marginal distributions of synaptic efficacies of Fig. 
1a (see text and Methods). Bars depict the capacity when learning is 
restricted to different subsets of synapses. From left to right: E →​ E; I →​ I; 
E →​ I & I →​ E; E →​ E, E →​ I & I →​ E; I →​ I, E →​ I & I →​ E; all synapses (black). 
Note that memory capacity when learning is restricted to E →​ E synapses 
is less than one-third of the capacity when it is restricted to I →​ I synapses. 
This is despite the fact that there are 8 times more E →​ E synapses than 
I →​ I synapses in the network. When learning is restricted to E →​ E & I →​ I 
synapses, the memory states of the inhibitory and excitatory parts of the 
network are dissociated (not shown).
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neurons decrease substantially. Thus, the pattern of excitatory net-
work activity is dominated by the targeted neurons (Fig. 7b). To 
understand the nonmonotonic effect of the fraction of targeted neu-
rons on the change in the pattern of activity (Fig. 7d), we note that 
the smaller the number of targeted neurons, the larger the num-
ber of ‘silenced’ nontargeted neurons is. Hence, we expect that the 

smaller the fraction of targeted neurons is, the larger the change 
in network activity should be. This argument, however, is accurate 
only in the mathematical limit of balanced networks. In finite net-
works, such as the one used in the simulation shown in Fig. 7, if the 
fraction of targeted neurons is too small, their overall activity is not 
sufficient to substantially affect the inhibitory neurons or to silence 
the remaining nontargeted neurons. In this regime of a small frac-
tion of targeted neurons, we expect a larger change in the pattern of 
activity as the fraction of targeted neurons increases. The combined 
effect of these two mechanisms results in the U-shaped function of 
Fig. 7d and Supplementary Fig. 3.

This cell-targeted excitatory plasticity, which tags specific neu-
rons, generates a cell assembly of neurons whose firing rate is, on 
average, higher than that of the nontargeted neurons (Fig. 7c). In 
learning experiments, the increase in the number of spines is tran-
sient, and the density of spines reverts to basal levels within days2–5. 
We hypothesize that during this window of disrupted balance 
between excitation and inhibition, inhibitory plasticity can form 
a new memory by encoding this specific pattern of activity as an 
attractor state29,30.

Discussion
Studying a model of a cortical circuit, we find that a higher and 
more heterogeneous firing rate of the inhibitory neurons compared 
to that of excitatory neurons results in a pattern of cortical activ-
ity that is dominated by the inhibitory synapses. Consequently, the 
cortex is robust to the experimentally observed volatility of E →​ E 
synapses. Similarly, learning that is mediated by inhibitory plastic-
ity is more effective than excitatory plasticity for memory storage. 
Finally, we show that excitatory plasticity can still effectively shape 
the pattern of activity in the network if the pattern of connectiv-
ity is structured. These results imply that inhibitory synapses play a 
dominant role in computation, despite their smaller number.

To understand the relevance of this theoretical analysis for corti-
cal function, we discuss the assumptions that, in the model, underlie 
the dominance of inhibitory connectivity. In our model, all cells are 
identical and only differ in their input. Inhibition dominates over 
excitation because most of the heterogeneity between cells is due 
to heterogeneity in their inhibitory input. This result is quantitative 
rather than qualitative and is a consequence of the parameters that 
were used in the model, as they were measured in the mouse bar-
rel cortex17,21, as well as our assumptions about the pattern of con-
nectivity. The structure of the mathematical equations themselves 
does not dictate this result. Rather, it is a combination of the fact 
that the distributions of excitatory and inhibitory synaptic effica-
cies are comparable, while the firing rates of the inhibitory neurons 
are higher and more diverse than those of the excitatory neurons. If 
these assumptions do not hold in a different brain area or a differ-
ent animal type, then the conclusions may change. Our framework 
can nevertheless be used to compute the expected effect of synaptic 
rewiring for any set of parameters. Another important assumption 
of our model is that rewiring is random. As a result, in the process of 
rewiring, a high-firing-rate presynaptic neuron can occasionally be 
replaced by a low-firing-rate one, or vice versa. If rewiring is non-
random, for example, such that a high-firing-rate presynaptic neu-
ron is necessarily replaced by another high-firing-rate neuron, then 
the effect of rewiring can be very different than the one predicted 
by our theory.

We show in Fig. 3 that in random unstructured networks with 
cortical parameters, the heterogeneity in inputs to the neurons 
is dominated by inhibition, and therefore, E →​ E rewiring has a 
limited effect on network activity. However, E →​ E rewiring can 
substantially affect network activity when connectivity is struc-
tured31,32, for example, when a subset of neurons receive substan-
tially more excitatory input (Fig. 7) or when memory patterns are 
embedded within the excitatory network (Fig. 6). Nevertheless, 
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Fig. 7 | The effect of heterogeneous addition of E → E connections. a, Top: 
schematic illustration of three sparsely connected networks of spiking 
neurons (see Methods). Left: baseline network, in which the probability 
of E →​ E connection between each pair of neurons (f) is 0.2. Middle: the 
same network as in the left panel, in which randomly chosen 20% of the 
excitatory neurons are targeted: each targeted neuron is now connected 
to the 80% previously unconnected excitatory neurons with a probability 
of 5%, such that the overall probability of incoming E →​ E connection to 
the targeted neurons is 24%. Connectivity onto nontargeted neurons is 
unchanged and their probability of incoming E →​ E connection remains at 
20%. Right: the same network when all excitatory neurons are targeted. 
Bottom: connectivity matrices between 10 randomly selected excitatory 
neurons given the conditions in the top row. b, Top: distributions of firing 
rates of excitatory (blue) and inhibitory (red) neurons given the conditions 
in a. Bottom: firing rates of randomly selected 20 excitatory (blue) and 
20 inhibitory (red) neurons. c, Distributions of firing rates of the targeted 
(black) and nontargeted (gray) excitatory neurons when 20% of the 
neurons are targeted (middle panels in a and b. For comparison, the blue 
curve denotes the distribution of firing rates of the excitatory neurons 
in the random network (left panel in a. d, Autocorrelogram of the E →​ E 
connectivity matrices (black) and of the vectors of firing rates of excitatory 
(blue) and inhibitory (red) neurons as a function of the fraction of targeted 
neurons. Points denote average over five simulations; error bars are s.e.m.
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even when considering atypical connectivity, inhibitory synapses 
are more flexible in their ability to control network activity. This 
is demonstrated by the larger memory capacity of learning that is 
based on inhibitory plasticity, compared with that based on excit-
atory plasticity (Fig. 6).

Inhibition is a key determinant of firing patterns, both during the 
critical period and during adulthood33–41. Moreover, the power of 
disinhibitory connectivity (I →​ I) in cortical computation has been 
recently unveiled42. Our theory provides a mechanistic explana-
tion for conditions in which inhibition can dominate computation. 
Specifically, we show how a stable inhibitory scaffold can stabilize 
cortical dynamics even in the presence of substantial volatility of 
excitatory synapses. However, there is some evidence that cortical 
activity changes over days and weeks10,43,44. In our framework, this is 
an indication of inhibitory volatility.

Indeed, not only excitatory but also inhibitory synapses are plas-
tic and change over time30,37,38,45–47. Plasticity of inhibitory synapses 
is likely co-orchestrated with excitatory plasticity in the process of 
memory formation29,48. Consistent with the observation that inhibi-
tory plasticity lags excitatory plasticity29, we suggest that the for-
mation of memory is a two-stage process, in which excitatory and 
inhibitory plasticity play qualitatively different roles. Heterogeneous 
transient changes in the E →​ E connectivity disrupt the balance 
between excitation and inhibition by changing the overall excitatory 
input to a task-specific subset of excitatory neurons (as in Fig. 7),  
allowing for changes in the network activity. Activity-dependent 
inhibitory plasticity incorporates these changes in the inhibitory 
connectome29,49,50. Rebalancing the network occurs over time, when 
spontaneous E →​ E synaptic rewiring eliminates the excess excit-
atory connections on the subset of neurons, but the memory trace 
is maintained in the inhibitory connections. Thus, inhibition sets 
the realm for excitatory plasticity and controls functional stability 
of the network.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41593-018-0226-x.
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Methods
Experimental methods. In this study, we used the data described in9,15. Animal 
procedures were approved by the Cold Spring Harbor Laboratory Animal Care 
and Use Committee and carried out in accordance with National Institutes of 
Health standards. The experimental procedures are described in detail in refs 9,15. 
In short, we implanted glass windows in the crania of 6 male adult (~6 months 
old) inhouse-bred mice of the GFP-M transgenic line (Tg(Thy1-EGFP)MJrs/J) 
selected for sparse GFP expression in the cortex51 and characterized the dynamics 
of spines using in vivo two-photon imaging. For image analysis, best projections 
of all dendrites for all timepoints were constructed that allowed identification 
of spines at a given timepoint and indexing of identical spines across time8. The 
volume of the spine was estimated as the spine's integrated intensity, normalized 
by the intensity of the adjacent dendrite. It has previously been shown that this 
normalized integrated spine intensity in in vivo two-photon imaging is tightly 
correlated with the volume of the spine as subsequently estimated by ssEM 
reconstruction7,8,52–54. Furthermore, there is good evidence that the volume of a 
spine can serve as a proxy for the functional strength of the corresponding synaptic 
connection3,12,19,20. No statistical methods were used to predetermine sample sizes, 
but our sample sizes are similar to those reported in a previous publication8.

Numerical methods. The spiking network. The network is composed of NE 
excitatory and NI inhibitory current-based integrate-and-fire neurons. The 
depolarization of neuron i in population ν=a E I t( ; ), ( )a

i  evolves according to
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where i =​ 1, …​, Na; τ​m denotes the membrane time constant, h t( )a
i  denotes 

the afferent input originating from the recurrent synaptic connectivity, and 
Ha

ext( ) denotes a constant input that originates from other brain regions and is 
homogeneous across neurons within the population a. The neuron fires a spike 
when reaching a fixed threshold θ (that is, ν θ≥t( )a

i ), and becomes refractory for a 
period τ​arp after which equation (1) resumes from a subthreshold rest potential vR.

The recurrent input to neuron i in population a, h t( )a
i , is given by
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where =c 1ab
ij  if there exists a synaptic connection from neuron j in population b to 

neuron i in population a, and =c 0ab
ij  otherwise; Wab

ij  is the corresponding synaptic 
efficacy; the sums over j are over all neurons in the corresponding populations, 
while the sums on k are over all the emission times of the action potentials, tb k

j
, , of 

the presynaptic neuron j in population b. For simplicity, we neglect the temporal 
dynamics of the synapses.

All parameters are reported in Supplementary Table 1.
The spiking network was simulated in two different configurations: the random 

network configuration (used to generate Figs. 2, 3 and 7) and the structured 
network configuration (used to generate Fig. 5).

The random network. In the random network configuration, connectivities for the 
synaptic populations E →​ I, I →​ E and I →​ I were generated as follows. The cab

ij  values 
were randomly and independently set to 1 with probability cab, while the Wab

ij  values 
were independently drawn from a log-normal distribution, with ⟨ ⟩Wab  and ⟨ ⟩Wab

2  
estimated from experimental data. The E →​ E connectivity was extracted from the 
spines' data by a procedure described below.

The structured network. In the structured network configuration, we first generated 
P memories. Each memory µ consists of a binary vector, ξ μ ξ μ{ ( ) ; ( )}E

i
I
i , where 

ξa
i is set to 1 with probability f independently for each µ and each i =​ 1, …​, Na, 

where (a =​ E,I) and 0 otherwise. Next, for each pair of neurons we computed the 
corresponding Hebbian terms
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0 otherwise, and μ μϵ = − ϵ( ) 1 ( )ba
ji

ab
ij . The variables μϵ ( )ab

ij  are introduced to prevent 
correlations between zab

ij  and zba
ji , which in turn manifest as correlations between 

Wab
ij  and Wba

ji . Finally, we set =c 0aE
ij  and we set =c 0aI

ij  if and only if (iff)

ζ Φ ζ Φ≤ ≡ − − ≤ ≡ −− −z c z c(1 ) ; (1 ); (5)aE
ij

aE aE aI
ij

aI aI
1 1

where Φ ⋅− ( )1  is the inverse of the Gaussian cumulative distribution function. 
Otherwise, we set =c 1ab

ij .
The idea behind this scheme is that the only nonzero excitatory synapses 

are the ones for which the Hebbian term is largest. Similarly, the only nonzero 
inhibitory synapses are the ones for which the Hebbian term is smallest (most 
negative, that is, most anti-Hebbian).

In addition,

= ⟨ ⟩−
⟨ ⟩
⟨ ⟩

+ Φ ⋅
⟨ ⟩
⟨ ⟩

−W W
W
W

y
W
W

ln ln 1
2

ln ( ) ln (6)ab
ij

ab
ab

ab
ab
ij ab

ab

2

2
1

2

2

where <​...>​ denote parameters, as in the random network, and 

∫ ∫= = .
ζ

ζ

y
c

Dz y
c

Dz1 ; 1
(7)aE

ij

aE

z

aI
ij

aI zaE

aE
ij

aI
ij

aI

where Dz is the standard Gaussian measure, that is, π∕− ∕e dz 2z 22
. For large P, zab

ij  is 
asymptotically normally distributed, with zero mean and unitary variance, and thus 
the nonzero synaptic efficacies Wab

ij  are log-normally distributed, with mean ⟨ ⟩Wab  
and variance ⟨ ⟩−⟨ ⟩W Wab ab

2 2. As a result of this procedure, the excitatory synapses 
associated with the largest Hebbian term and the inhibitory synapses associated 
with the smallest Hebbian term are largest in their magnitude.

Note that the excitatory synapses (that is, E →​ E and E →​ I) follow a Hebbian 
rule, that is, the larger the Hebbian term the larger the corresponding synaptic 
efficacy is, while the inhibitory synapses (that is, I →​ E and I →​ I) follow an anti-
Hebbian rule, that is, the larger the Hebbian term the smaller the corresponding 
synaptic efficacy is. Small values of zaE

ij  and large values of zaI
ij  result in the lack of 

the corresponding synaptic connection.
To activate memory µ during the simulations (Fig. 5), we increase Ha

ext( ) by 
75% to neurons for which ξ μ =( ) 1a

i  and decrease it by the same proportion to 
neurons for which ξ μ =( ) 0a

i . External inputs to all neurons are then restored to 
their baseline levels linearly over 250 ms.

Extracting the E→​E connectivity from spine imaging data. Our spine imaging data 
consisted of 3,688 spines, 1,420 of which were present in the first imaging session. 
The E →​ E connectivity used for the simulations of Fig. 1 is constructed in the 
following way. First, the probability of connection between any two excitatory 
neurons is set to cEE =​ 0.2. For those connected pairs, we randomly associate 
(without replacement) a spine from the 1,420 spines imaged in the first session to 
each of these connections. The spine sizes are converted into the corresponding 
putative synaptic efficacies in the following procedure: we assume that synaptic 
efficacy, W, is proportional to spine size, S, (that is, W =​ g · S), and computed the 
proportionality factor by requiring that the average synaptic efficacy (over all 
spines in all sessions) was the same as the one reported in Supplementary Table 1 
(that is, = ⟨ ⟩∕⟨ ⟩g W SEE ).

To simulate the effects of the spontaneous synaptic reorganization observed 
in the experiment, Fig. 2, we construct six synaptic matrices that are identical 
apart from the E →​ E segment. The E →​ E segment is generated as follows. First, 
the probability of connection between any two excitatory neurons in any of the 6 
matrices is set to cEE =​ 0.51. For those potentially connected pairs, we randomly 
associate (without replacement) a spine from the 3,688 imaged spines to each of 
these connections. The size of that spine in the six imaging sessions was used to 
generate the connection between the corresponding excitatory neurons in all six 
networks. Note that, as most of the spines were transient, the effective probability 
of connection between any two excitatory neurons is approximately constant 
(cEE ≅​ 0.2) across the six synaptic matrices. Specifically, the first synaptic matrix in 
Fig. 2 is identical to that of Fig. 1.

To simulate the effects of E →​ E rewiring in Fig. 3, we use a log-normal 
distribution of synaptic efficacies, where the probability of connection between 
any two excitatory neurons is set to cEE =​ 0.2 and the mean and variance of the 
distribution is taken from the mean and variance of the distribution of 3,688 
spines, with the same conversion of size to efficacy as in Figs. 1 and 2.

In our analysis, we assumed that a spine is equivalent to a connection. 
However, there is some evidence that cortical neurons can be connected through 
more than one synapse55,56. The implications of this possibility for the results 
presented in Fig. 2 depend on the way in which spine volatility is correlated within 
a single connection. However, this will not affect the results presented in Figs. 3–7.

Parameter setting. The parameters used for the numerical simulations are reported 
in Supplementary Table 1. In all cases for which experimental estimates are 
available, the parameters are selected from within the corresponding range.

For simplicity, we choose the single-cell parameters to be the same for the 
excitatory and inhibitory neurons. The spike generation threshold is set at 
θ =​ 33 mV, within the range 17–43.8 mV estimated in ref. 21. The membrane time 
constant is set at τm =​ 10 ms, within the range 9.3–28.4 ms estimated in ref. 21.
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The means of the four types of synaptic weights are extracted from ref. 21 in the 
following way. ⟨ ⟩WEE  is taken from ref. 21. With respect to the inhibitory synapses, 
because the parameters in the literature are estimated separately for fast-spiking 
and non-fast-spiking inhibitory neurons, we estimate ⟨ ⟩WEI , ⟨ ⟩WIE , and ⟨ ⟩WII  
as weighted averages of the values reported for each population of inhibitory 
neurons, where the weighting is equal to the number of cells measured in each 
subpopulation. For the variances, we first estimate the variances in the synaptic 
efficacies for each subpopulation of inhibitory neurons, based on the reported 
s.e.m. values and numbers of synapses in ref. 21. As with the estimated means, we 
use a weighted average to lump together the numbers for fast-spiking and non-
fast-spiking inhibitory neurons. ⟨ ⟩ = .W 0 26 mVEE

2 2 is estimated from the spines’ 
size data after linear scaling (see Sec. 2.2). Note that estimating ⟨ ⟩WEE

2  from ref. 21 
using the s.e.m. of ⟨ ⟩WEE  as we do for the other synaptic connections’ types would 
have yielded a comparable parameter, = .W 0 29 mVEE

2 2. The choice of connection 
probabilities is less constrained by the literature, in particular because connection 
probabilities depend on the distance between neurons, which is not modeled here. 
Similarly, there are no hard constraints on the values of HE

ext( ) and HI
ext( ). These 

parameters are all chosen to have the average firing rate within commonly reported 
ranges for cortical networks17, ≅v 1 HzE  and ⟨ ⟩ ≅v 7 HzI . For these parameters, 
HE

ext( ) is approximately 75% of the total average excitatory input onto the excitatory 
neurons, and HI

ext( ) is approximately 46% of the total average excitatory input onto 
the inhibitory neurons.

Analytical methods. Mean-field analysis of the random network. In the steady state, 
the network operates in an asynchronous, low-rate state of activity23,24. In such 
a state, spikes are the result of fast temporal fluctuations in the afferent synaptic 
input, whose average level is typically below the threshold. In these conditions, 
spiking is akin to a noise-driven escape process and the f −​ I curve, ϕ(·) is well 
approximated by57













ϕ τ τ= = + ∫ +
τ

σ τ

θ τ
σ τ

−

−
−

v h dy e y( ) (1 erf( )) (8)a
i

a a
i

arp m
v h

h

y

1

R m a
i

a m

m a
i

a m 2

where αvi  is the average firing rate of neuron i in population a, ha
i  is the 

corresponding time-averaged input, τarp is the absolute refractory period, τm is the 
membrane time constant, θ is the spike emission threshold, vR is the postspike reset 
potential, and σa

2 is the variance per unit time of the synaptic input. In other words, 
in these conditions we can approximate the spiking dynamics of the network using 
a mean-field rate model, in which the fast-noise (due to spiking) is integrated into 
the shape of the single-neuron f – I curve. The time-averaged input to neuron i in 
population a is given by

∑ ∑= + −
= =

h N h
N

w v
N

w v1 1
(9)a

i
E a

ext

E j

N

aE
ij

E
j

I j

N

aI
ij

I
j( )

1 1

E I

where, for later convenience, we have made explicit the scaling of the external 
inputs and synaptic efficacies with the size of the network, that is,

→ →c W
w

N
H N h; (10)ab

ij
ab
ij ab

ij

b
a

ext
E a

ext( ) ( )

The activities of the different neurons are weakly correlated, and each neuron 
receives a large number of randomly distributed connections. Thus, the 
distribution of inputs over the neurons within each neuronal population is well 
approximated by a Gaussian distribution. The corresponding mean, ua, and 
variance, sa

2, are given by











= ⋅ + ⟨ ⟩ ⟨ ⟩− ⟨ ⟩ ⟨ ⟩u N h w v

N
N

w v (11)a E a
ext

aE E
I

E
aI I

( )

∑= −
=

s w v w v( ) (12)a
b E I

ab b ab b
2

,

2 2 2 2

and the variance per unit time of the synaptic input σa
2 (see equation (8)) is given by

∑σ = ⟨ ⟩ ⟨ ⟩
=

w v (13)a
b E I

ab b
2

,

2

The steady state properties of the network activity can now be computed by using 
a self-consistency argument. Knowing the statistics of the afferent inputs, one can 
compute the statistics of firing rates in the network. In particular, one can compute 
the first two moments, which are given by

ηϕ η= ∫ + ⋅v D u s( ) (14)a a a a

η ϕ η= ∫ + ⋅v D u s( ( )) (15)a a a a
2 2

Incorporating equations (14) and (15), into equations (11)–(13), one obtains a set 
of self-consistency equations whose solution determines the statistics of the inputs 
in the steady state.

Effect of rewiring in the feedforward network. To gain insight, we commence by 
considering the effect of synaptic rewiring in the feedforward network depicted 
in Fig. 4. The time-averaged input to the postsynaptic neuron i in population a is 
given by (see equations (11) and (12)):

η η= + +h u s s (16)a
i

a E
i

aE I
i

aI

where ηE
i  and ηI

i are two uncorrelated Gaussian variables with zero mean and 
unitary variance; and sab

2  is the variance in the time-averaged input due to 
the heterogeneity in the inputs from population b. The rewiring of synaptic 
connections from population b to neuron i in population a is equivalent to the 
resampling of the corresponding Gaussian variable ηb

i. The larger the corresponding 
variance, that is, sab

2 , the larger the resulting change is in the time-averaged input to 
the postsynaptic neuron and, thus, the larger the effect of rewiring.

The variance sab
2  is given by

= ⟨ ⟩ ⟨ ⟩−⟨ ⟩ ⟨ ⟩ = ⟨ ⟩ ⟨ ⟩− ⟨ ⟩ ⟨ ⟩s w v w v N c W v c W v( ) (17)ab ab b ab b b ab ab b ab ab b
2 2 2 2 2 2 2 2 2 2

≅ ⟨ ⟩ ⟨ ⟩c N W v (18)ab b ab b
2 2

where we used the fact that ≪c cab ab
2  when ≪c 1ab  (sparse network). Thus, as 

explained in the ‘Results’ section, the effect of synaptic rewiring can be predicted 
from the number of connections, cabNb, the mean of the distribution of squared 
synaptic efficacies, ⟨ ⟩Wab

2  and the mean of the distribution of squared firing rates, 
⟨ ⟩vb

2 .
In the recurrent network, the synaptic rewiring also affects the firing rates 

of the presynaptic neurons. The effect of such rewiring is discussed in the next 
section.

Effect of rewiring in the random network. We investigate the impact of changes 
in the network synaptic structure on the firing rates in the recurrent network. 
Hereafter, we denote with a tilde (~) the quantities in the perturbed network, while 
those without the tilde denote quantities in the original network. We shall consider 
only changes that do not affect the statistical properties of the synaptic structure: 
the distribution of synaptic efficacies, as well as the probability of connection 
between any two neurons in the perturbed network, are the same as in the original. 
As a result, the marginal distributions of inputs in the two networks are the same 
(that is, ua =​ ũa, ∼=s sa a

2 2, ∼σ σ=a a
2 2 for a =​ E, I). The inputs to the same neuron in the 

two networks are Gaussian and correlated, that is,

η= +h u s (19)a
i

a a
i

a

∼ ∼ρ η ρ η= + + −h u s( 1 ) (20)a
i

a a a
i

a a
i

a
2

where ρa denotes the correlation coefficient, and ηa
i and ∼ηa

i are uncorrelated 
Gaussian variables with zero mean and unitary variance. The correlation coefficient 
can be computed by evaluating 

∼
⟨ ⟩h ha

i
a
i

. From equations (19) and (20)

∼
ρ = −s h h u (21)
a a a

i
a
i

a
2 2

where ua is defined in equation (11). We now evaluate 
∼
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i

a
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All terms except the last two can be straightforwardly evaluated by noticing that (i) 
the w and the v values are independent because of the random connectivity; (ii) all 
variables with the tilde and without the tilde are uncorrelated at different sites (that 
is, for i ≠​ j and/or for the different populations, E and I); (iii) all moments of the 
variables with the tilde are the same as those of the variables without the tilde (for 
example, ∼⟨ ⟩ = ⟨ ⟩w wab

ij
ab
ij  and ⟨ ⟩ = ⟨ ̃ ⟩v va

j
a
j ). For the last two terms, we separate in the 

sum terms with j =​ k from terms with j ≠​ k
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Putting all together, one obtains

∼∑ρ = −⟨ ⟩ ⟨ ⟩ + ⟨ ⟩ ⟨ ̃ ⟩
=

s w v w w v v( ) (32)a a
b E I

ab b ab ab b b
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Knowing ρ sa a
2, one can compute vaṽa in the following way

∼ ∼∫ η ηϕ η ϕ ρ η ρ η⟨ ̃ ⟩ = + ⋅ + + −v v D D u s u s( ) ( ( 1 ) ) (33)a a a a a a a a a a
2

Incorporating equation (33) into equation (32), one obtains a set of self-
consistent equations whose solution determines ρa (a =​ E, I) as a function of the 
network parameters and of the synaptic perturbation.

Mean-field analysis of the storage capacity. We are interested in the existence of 
steady retrieval states (to be defined shortly) as a function of the loading level, 
that is, the number of memories per neuron. A memory is defined by a binary 
vector ξ μ ξ μ{ ( ) ; ( )}E

i
I
i , defined in the section ‘The structured network,’ where we also 

describe the embedding of memories into the synaptic structure.
The memory µ is being successfully retrieved if there exists a steady state of 

activity of the network such that the average activity level of the neurons belonging 
to the memory (that is, the neurons for which ξ μ =( ) 1a

i ) is larger than the global 
average activity level of the network. More precisely, we define
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m
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so that memory µ is being successfully retrieved by population a if ma(µ) >​ 0. 
Following a time-honored tradition, we choose memory 1 and study under which 

conditions the corresponding retrieval state exists. The time-averaged input to 
neuron i in population a is given by
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for a =​ E, I. To extract the specific contribution of memory 1 to synaptic 
structuring, we Taylor expand the function FaE(·) as follows
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where we have dropped the dependence on µ, being understood that we are 
considering memory 1. Incorporating equation (41) in equation (35) yields
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where we defined α =​ P/(NE +​ NI). We can use the central limit theorem to estimate 
the different sums over j in the large N limit. Note that, in this limit, the statistics 
of the ∼zaE

ij  values become independent of the specific realization of the memory 
patterns ξ μ( )a

i , µ >​ 1, at neuron i (that is, it is self-averaging58). Thus,
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where, as in equations (11) and (12),
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Equations (43) and (44) become
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Putting all together we obtain
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This mean field theory obtained is similar to the one obtained in the section 
"Mean-field analysis of the random network" but with two additional order 
parameters, mE and mI, which describe the retrieval states (ma >​ 0).The equations 
that determine the first two moments of the firing rates ⟨ ⟩va

n  (n =​ 1, 2) and ma are, 
similar to equations (14) and (15)
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It is easy to see that the mean-field equations always have a solution with ma =​ 0, 
while retrieval solutions exist only for suitably small α. The critical capacity, αc, is 
defined as the largest α for which the retrieval solution still exists.

Effect of rewiring on memory storage. The rewiring of a synaptic population (for 
example, E →​ E) removes the correlation between the synaptic efficacies in that 
population and the memories stored. In the mean-field theory, this is equivalent 
to setting the corresponding signal term (that is, the Aab values) to zero. Thus, to 
investigate the effect of E →​ E rewiring on memory capacity, we solve the mean-
field equations with AEE =​ 0. To investigate the effect of I →​ I rewiring, we solve the 
mean-field equations with AII =​ 0. Similarly, to compute the storage capacity of the 
E →​ E synapses, we solve the mean-field equations with all signal terms set to zero 
but AEE.

It is important to note that, for the parameters used, the signal terms associated 
with excitatory synapses (that is, AaE) are larger than those associated with the 
inhibitory synapses (AEE =​ 1.44, AIE =​ 3.28, AEI =​ 0.75 and AII =​ 0.84). Thus, the 
larger memory capacity associated with the inhibitory synapses is not simply due 
to stronger dependence of the efficacies on the memory patterns.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability. The code for numerical simulations is available from the authors 
upon reasonable request.

Data availability
The dataset analyzed in the current study is available in http://bio.huji.ac.il/
yonatanlab/spines/.
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