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Abstract4

Adapting to new environments is a hallmark of animal and human cognition, and Re-5

inforcement Learning (RL) models provide a powerful and general framework for studying6

such adaptation. A fundamental learning component identified by RL models is that in7

the absence of direct supervision, when learning is driven by trial-and-error, exploration8

is essential. The necessary ingredients of effective exploration have been studied exten-9

sively in machine learning. However, the relevance of some of these principles to humans’10

exploration is still unknown. An important reason for this gap is the dominance of the11

Multi-Armed Bandit tasks in human exploration studies. In these tasks, the exploration12

component per se is simple, because local measures of uncertainty, most notably visit-13

counters, are sufficient to effectively direct exploration. By contrast, in more complex14

environments, actions have long-term exploratory consequences that should be accounted15

for when measuring their associated uncertainties. Here, we use a novel experimental task16

that goes beyond the bandit task to study human exploration. We show that when local17

measures of uncertainty are insufficient, humans use exploration strategies that propagate18

uncertainties over states and actions. Moreover, we show that the long-term exploration19

consequences are temporally-discounted, similar to the temporal discounting of rewards in20

standard RL tasks. Additionally, we show that human exploration is largely uncertainty-21

driven. Finally, we find that humans exhibit signatures of temporally-extended learning,22

rather than local, 1-step update rules which are commonly assumed in RL models. All23

these aspects of human exploration are well-captured by a computational model in which24

agents learn an exploration “value-function”, analogous to the standard (reward-based)25

value-function in RL.26

Introduction27

When encountered with a novel setting, animals and humans explore their environment. Such28

exploration is essential for learning which actions are beneficial for the organism and which29

should be avoided. The speed of learning, and even the learning outcome, crucially depends on30
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the “quality” of that exploration: for example, if as a result of poor exploration some actions31

are never chosen, their effects are never observed, and hence cannot be learned. More generally,32

a fundamental difference between learning by trial and error and Supervised Learning scenarios33

is that in the latter, the distribution of examples is controlled by the “teacher”, whereas in the34

former, the distribution of examples that the agent gets to observe depends on the agent’s own35

behavioral policy. Therefore, in order to successfully learn a good policy by trial and error,36

agents need to take into account uncertainty when choosing actions, reflecting the fact that the37

observations collected so far might mis-represent the actual quality of the different actions.38

Learning by trial and error is often abstracted in the framework of the computational problem39

of Reinforcement Learning (RL) (Sutton and Barto, 2018): An agent makes sequential decisions40

in an unknown environment; at each time-step, it observes the current state of the environment,41

and chooses an action from a set of possible actions. In response to this action, the environment42

transfers the agent to the next state, and provides a reward signal (which can also be zero or43

negative). The ultimate goal of the agent is to learn how to choose actions – i.e, learn a policy44

– such as to maximize some performance metric, typically the expected cumulative reward.45

Exploration algorithms in RL differ in the particular way they address uncertainties. Random46

exploration, in which a random component is added to the policy (e.g., a policy otherwise max-47

imizing based on current estimates) is, arguably, the simplest way of incorporating exploration.48

By adding randomness, the agent is bound to eventually accumulate information about all49

states and actions. More sophisticated exploration methods, referred to as directed exploration50

(Thrun, 1992), attempt to identify and actively choose the specific actions that will be more51

effective in reducing uncertainty. To do that, the agent needs to track and update some esti-52

mate or measures of uncertainty associated with different actions. For example, the agent can53

use visit-counters: keep track of the number of times each action was chosen in each state, and54

prioritize those actions that have previously been neglected (Auer et al., 2002; Bellemare et al.,55

2016; Tang et al., 2017; Ostrovski et al., 2017).56

The intuition behind counter-based methods can be made precise in the important case of57

Multi-Armed Bandit problems (or bandit problems, for short). In a k-armed bandit, the envi-58

ronment is characterized by a single state and k actions (“arms”), each associated with a reward59

distribution. Because these distributions are unknown, and feedback (i.e., a sample from the60

distribution) is given only for the chosen arm at each trial, exploration is needed to guaran-61

tee that the best arm (i.e., the one associated with the highest expected reward) is identified.62

Bandit problems are theoretically well-understood, with various algorithms having optimality63

guarantees, under some statistical assumptions (for a comprehensive review see Lattimore and64

Szepesvári, 2020). Particularly, counter-based methods (e.g., UCB, Auer et al., 2002) can be65

shown to explore optimally in bandit tasks, in the online-learning sense of minimizing regret.66

Human exploration has been studied extensively in bandit and bandit-like problems (Shteingart67

et al., 2013; Wilson et al., 2014; Mehlhorn et al., 2015; Gershman, 2018; Schulz et al., 2020).68

Because these are arguably the simplest form of RL problems, they offer a clean and potentially69

well-controlled framework for experiments (Fox et al., 2020). The strong theoretical foundations70

are another appeal for experimental work, because behavior can be compared with well-defined71

algorithms, and, potentially, also with an optimal solution.72

However, generalizing conclusions about human exploration from behavior in bandit tasks to73

behavior in more complex environments is not trivial. In a bandit task, an action that was74

chosen less times is, everything else being equal, exploratory more valuable compared to one75
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that was chosen more often. By contrast, visit-counters alone might be a poor measure of76

uncertainty in complex environments, because they completely ignore future consequences of77

the actions (Figure 1a). Indeed, the limitations of naive counter-based exploration in structured78

and complex environments have been discussed in the machine learning literature, and different79

exploration schemes that take into account the long-term exploratory consequences of actions80

have been proposed (Storck et al., 1995; Meuleau and Bourgine, 1999; Osband et al., 2016a,b;81

Chen et al., 2017; Fox et al., 2018).82

Our goal here is to study the extent to which human exploration is sensitive to long-term83

consequences of actions, as opposed to counter-based exploration. Crucially, this question84

cannot be addressed in the common bandit problems paradigm, because general exploration85

algorithms are reduced to counter-based methods when they are faced with a bandit problem.86

Thus, even if humans do (approximately) use some general, beyond visit-counters, directed87

exploration strategies, they will likely manifest as counter-based strategies in bandit tasks.88

Therefore, we set out to study exploration in a novel task that addresses these issues. First, we89

show that humans take into account the long-term exploratory consequences of their actions90

when exploring complex environments (Experimental results). Next, we model this exploration91

using an RL-like algorithm, in which agents learn exploratory “action-values” and use these92

values to guide their exploration (Computational modeling).93

Results94

Experimental results95

Sensitivity to future consequences of actions96

To test the hypothesis that human exploration is sensitive to the long-term consequences of97

actions, we conducted an experiment that formalizes the intuition presented in the Introduction98

(see Figure 1a). In the experiment (denoted as “Experiment 1”), participants were instructed to99

explore a novel environment, a maze of rooms, by navigating through the doors connecting those100

rooms (Figure 1b). Each room was identified by a unique background, a title, and the number101

of doors in that room. No reward was given in this task, but participants were instructed to102

“understand how the rooms are connected” (see Methods). Testing participants in a task devoid103

of clear goal and rewards is somewhat unorthodox. We go back to this point in the Discussion104

section.105

Three groups of participants were tested, each in a different maze as is described in Figure 1c106

(top): In all mazes, there was a start room (S) with two doors, each leading to a different room.107

One of these rooms, a multi-action room (MR) was endowed with nR doors, while the other,108

denoted asML, was endowed with nL doors. All three mazes were unbalanced, in the sense that109

nR > nL. Between the different mazes, we varied nR−nL, while keeping nR+nL = 7 constant.110

The locations of the doors leading to MR and ML were counterbalanced across participants.111

For clarity of notation, we refer to them as “right” and “left”, respectively. All other remaining112

rooms were endowed with only a single door. After going through these single-door rooms, a113

participant would reach a common terminal room (T ). There, they were informed that they114

reached the end of the maze and then they were transported back to S. Overall, each participant115
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Figure 1: Directed exploration in complex environments. (a) In a bandit problem (left), actions have no
long-term consequences. In complex environments (right), actions have long-term consequences as particular
actions might lead, in the future, to different parts of the state-space. In this example, these parts (shaded areas)
are of different size. As a result, the local visit-counters are no longer a good measure of uncertainty. In this
example, a2 should be, in general, chosen more often compared to a1 in order to exhaust the larger uncertainty
associated with it. (b) Participants were instructed to navigate through a maze of rooms. Each room was
identified by a unique background image and a title. To move to the next room, participants chose between
the available doors by mouse-clicking. Background images and room titles (Armenian letters) were randomized
between participants, and were devoid of any clear semantic or spatial structure. (c) The three maze structures
in Experiment 1 (Top) have a root state S (highlighted in yellow) with two doors. They differ in the imbalance
between the number of doors available in future rooms MR and ML (nR : nL – 4:3, 5:2, 6:1). Consistent with
models of directed exploration that take into account long-term consequences of actions, and unlike counter-
based models, participants exhibited bias towards roomMR, deviating from a uniform policy (Bottom, bars and
error-bars denote mean and 95% confidence interval of pR; number of participants: n = 161; 120; 137. Statistical
significance, here and in following figures: ∗ : p < 0.05, ∗∗ : p < 0.01; ∗∗∗ : p < 0.001).

visited S (of the one particular environment they were assigned to) 20 times.116

Since there was no reward, all choices in this task are exploratory. If participant’s exploration117

is driven by visit-counters, then we expect that the frequencies in which they choose each of the118

doors in S, denoted pR and pL, would be equal. By contrast, if they take into consideration the119

long-term consequences of their actions, then we would expect them to choose the right door120

more often (resulting in pR > pL). In line with the hypothesis that participants are sensitive121

to the long-term consequences of their actions, we found that averaged over all participants122

in the three conditions, pR > pL (pR = 0.54, 95% confidence interval: pR ∈ [0.518, 0.563]).123

Considering each group of participants separately, significant bias in favor of pR was observed124

in the 6:1 (pR = 0.572, n = 137, 95% CI: [0.528, 0.617]) and the 5:2 groups (pR = 0.549,125

n = 120, 95% CI: [0.506, 0.592]), but not in the 4:3 group (pR = 0.507, n = 161, 95% CI:126

[0.472, 0.541]).127

We hypothesized that the larger the imbalance (nR−nL), the stronger will be the bias towards128

MR (larger pR). To test this hypothesis, we compared the biases of participants in the different129

groups (Figure 1c). As expected, the average pR in the 5:2 and 6:1 groups was significantly130
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larger than that of the 4:3 group (p < 0.05 and p < 0.01 respectively, permutation test, see131

Methods). The average pR in the 6:1 group was larger than that of the 5:2 group. However,132

this difference was not statistically significant (p = 0.17).133

The results depicted in Figure 1c indicate that on average, human participants are sensitive to134

the exploratory long-term consequences of their actions. Considering individual participants,135

however, there was substantial heterogeneity in the biases exhibited by the different partici-136

pants. While some chose the right door almost exclusively, others favored the left door. We next137

asked whether some of this heterogeneity across participants reflects more general individual-138

differences in exploratory strategies, which would also manifest in their exploration in other139

states. To test this hypothesis, we focused on state MR. In this state, exploration is also140

required because there are nR different alternatives to choose from. However, unlike in state S,141

these alternatives do not, effectively, have long-term consequences. As such, choosing an action142

in MR is a bandit-like task. Thereofre, directed exploration in MR is expected to be driven by143

visit-counters, such that participants would equalize the number of times each door in MR is144

selected. Note that this is not a strong prediction, because random exploration will, on average,145

also equalize the number of choices of each door. Yet, directed and random exploration have146

diverging predictions with respect to the temporal pattern of choices in MR. Specifically, with147

pure directed exploration (that is driven by visit-counters), participants are expected to avoid148

choosing the same door that they chose the last time that they visited MR. Consequently,149

the probability of repeating the same choice in consecutive visits of MR, which we denote by150

prepeat, is expected to vanish. By contrast, random exploration predicts that prepeat = 1/nR.151

Figure 2 (Top) depicts the histograms (over participants) of prepeat in the three experimental152

conditions, demonstrating that participants exhibited substantial variability in prepeat. While153

for some participants prepeat was close to 0, as predicted by pure directed exploration, for others154

it was similar to 1/nR, as predicted by random exploration. Many other participants exhibited155

prepeat that was even larger than 1/nR, indicating that, potentially, choice bias and / or mo-156

mentum also influenced choices in the task. Based on the predictions of directed and random157

exploration, we divided participants into two groups, depending on the quality of exploration158

in MR: “good” directed explorers, in which prepeat < 1/nR, and “poor” directed explorers, in159

which prepeat ≥ 1/nR (Figure 2 Top, dots and diagonal stripes, respectively).160

Is the quality of directed exploration in the bandit-like task of state MR informative about di-161

rected exploration in S? To address this question, we computed the histograms of pR separately162

for the “good” and “poor” directed explorers (Figure 2 Bottom). Averaging within each group163

we found that indeed, pR among the “poor” explorers was not significantly different from chance164

in any of the three conditions (Figure 3a), consistent with the predictions of random explo-165

ration. By contrast, among “good” explorers, there was a significant bias in the 5:2 (pR = 0.597,166

n = 53, 95% CI: [0.537, 0.652]) and the 6:1 (pR = 0.612, n = 71, 95% CI: [0.544, 0.678]) groups167

(Figure 3b). These findings show that participants that avoid repetition in the bandit task are168

also more sensitive to the long-term exploratory consequences of their actions. We conclude169

that those participants who tend to perform good directed exploration in MR also perform170

good directed exploration in S. Crucially, the implementation of directed exploration in the171

two states is rather different. In MR, where different actions have no long-term consequences,172

“good” explorers rely on visit-counters that are the relevant measure of uncertainty, resulting in173

an overall uniform choice. By contrast in S, actions do have long-term consequences, and “good”174

explorers go beyond the visit-counters, biasing their choices in favor of the action associated175

with more future uncertainty.176
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Figure 2: Heterogeneity in exploration strategies. Top: Histograms of prepeat at state MR (highlighted
in yellow) for participants in the three conditions of Experiment 1 (left to right: nR = 4, 5, 6). Dashed vertical
line represents the value expected by chance, 1/nR. Based on their prepeat values, we divided participants into
“good” and “poor” directed explorers (dotted and striped patterns, respectively; “good” explorers proportion:
40%, 44%, 51%). Bottom: Histograms of pR at state S (highlighted in yellow), for the “good” and “poor”
directed explorers groups.

Temporal discounting177

In the previous section we showed that if the future exploratory consequences of the actions are178

one trial ahead, humans are sensitive to these consequences. It is well known that in humans179

and animals, the value of a reward is discounted with its delay (Vanderveldt et al., 2016).180

We hypothesized that similar temporal discounting will manifest in evaluating the exploratory181

“usefulness” of actions. To test this prediction, we conducted Experiment 2 on a new set of182

participants. Similar to Experiment 1, Experiment 2 consisted of 3 different maze structures.183

The imbalance between the number of possible outcomes was kept fixed across 3 mazes, at184

nR = 5 and nL = 2. However, the depth at which these outcomes occur, relative to the185

root state S, varied between 1 (as in Experiment 1) to 3 (Figure 4, Top). The depth of MR186

determines the delay between the choice made at S and its exploratory benefit. In the presence187

of temporal discounting of exploration, we therefore expect pR to decrease with the depth of188

MR.189

To test this prediction, we divided participants to “good” and “poor” directed explorers, as in190

Experiment 1, based on the degree of prepeat in MR. As depicted in Figure 4, both the “poor”191

and “good” explorers exhibited a bias in favor of “right” in S. For the “good” explorers, a larger192

delay was also associated with a smaller bias.193
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Figure 3: “Poor” and “good” directed explorers. Choice biases at state S (pR) analyzed separately for
“poor” and “good” explorers (striped and dotted patterns; divided based on their exploration inMR, see Figure 2)
in the 3 conditions of Experiment 1. While behavior of the “poor” explorers was not significantly different from
chance (consistent with the prediction of random exploration), “good” explorers in the nR = 5, 6 conditions
exhibited significant bias towards “right”. Bars and error bars denote mean and 95% confidence interval of pR;
number of participants n = 95; 66 67; 53, 66; 71 (“poor”; “good”).
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Figure 4: Temporal discounting of exploratory consequences. The three mazes in Experiment 2 (Top)
had the same imbalance (nR = 5, nL = 2), however we varied the depth of MR (and ML) relative to the
root state S (left to right: depth = 1, 2, 3). “Poor” and “good” directed explorers (striped and dotted patterns,
respectively) were divided by their prepeat value at MR (same as in Experiment 1, see Figure 2). Bars and
error-bars denote mean and 95% confidence interval of pR. Number of participants n = 99; 92, 121; 84, 153; 85
(“poor”; “good”).
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The dynamics of exploration194

Insofar, we demonstrated that human participants exhibit directed exploration in which they195

take into their considerations the future exploratory consequences of their action. To bet-196

ter understand the computational principles underlying this directed exploration, we revisit197

the question of why explore in the first place. One possible answer to this question is that198

exploration is required for learning. According to this view, actions are favorable from an199

exploratory point of view when they are associated with, or lead to other actions associated200

with, high uncertainty, missing knowledge, and other related quantities (Schmidhuber, 1991;201

Still and Precup, 2012; Little and Sommer, 2014; Houthooft et al., 2016; Pathak et al., 2017;202

Burda et al., 2019). An alternative, that has received some attention in the machine learning203

literature, is that exploration could be driven by its own normative objective (Machado and204

Bowling, 2016; Hazan et al., 2019; Zhang et al., 2020; Zahavy et al., 2021). For example, such205

objective could be to maximize the entropy of the discounted distribution of visited states and206

chosen actions (Hazan et al., 2019). Experimentally, the difference between the two approaches207

will be particularly pronounced towards the end of a long experiment. When all states and208

actions had been visited sufficiently many times, everything that can be learned has already209

been learned. Thus, if the goal of exploration is to facilitate learning, then exploratory behavior210

is expected to fade over time. By contrast, if exploration is driven by a normative objective,211

then we generally expect behavior to converge to a one that (approximately) maximizing this212

objective, and hence maintaining asymptotic exploratory behavior.213

Specifically considering Experiment 1 and 2, we do not expect any bias in S (pR = 0.5) in the214

beginning of the task, because participants are naive and are unaware of the different long-term215

consequences of the two actions. With time and learning, we expect participants to favor MR216

over ML (pR > 0.5). This prediction holds either if participants are driven by the goal of217

reducing the (long-term) uncertainty associated with MR, or by the goal of optimizing some218

exploration objective, such as to match the choices per door in MR and ML. In other words,219

both approaches predict that with time, pR will increase. With more time elapsing, however,220

the predictions of the two approaches diverge. As uncertainty decreases, uncertainty-driven221

exploration predicts a decay of pR to its baseline value (p∗R = 0.5). By contrast, the normative222

approach predicts that pR will converge to a p∗R > 0.5 steady-state.223

Figure 5 depicts the temporal dynamics of pR (t), as a function of the number of times t that224

S was visited (defined as “episodes”). The learning curves are shown separately for the “poor”225

(Figure 5a) and “good” (Figure 5b) explorers, averaged over all 6 conditions of Experiments226

1 and 2. As expected, there was no preference in the first episodes. However, with time,227

the participants developed a bias in favor of MR, which was more pronounced in the “good”228

directed explorers group. In this group, participants exhibited a significant bias, pR (t) > 0.5229

from the 3rd episode. Notably, this increased bias was followed by a decrease to a steady230

state bias value (episodes 10 − 20). This steady state value was lower than its peak transient231

value (consistent with uncertainty-driven exploration), but was higher than baseline level before232

learning (consistent with a normative exploration objective).233
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(a) (b)

Figure 5: Learning dynamics. Bias towards MR as a function of training episode (pR (t)), averaged over
participants in all 6 conditions (Experiments 1 & 2), shown for the “poor” (a) and “good” (b) groups. The
“good” explorers exhibited a transient peak in pR (t), consistent with models of uncertainty-driven exploration.
However, the steady-state value p∗R was still slightly larger than chance, consistent with an objective-driven
exploration component. Dots and shaded areas denote mean and 95% confidence interval of pR (t).

Computational modeling234

The model235

Together, the two experiments of the previous sections provide us with the following insights:236

(1) Humans exploration is affected by long-term consequences of actions (Figure 1c); (2) Both237

the number of future states and their depth affect this exploration (Figure 3 and Figure 4);238

and finally, (3) Exploration dynamics peaks transiently and then decays, consistent with an239

uncertainty-driven exploration (Figure 5).240

In theorizing about effective exploration we have alluded to concepts such as “exploratory241

value” or “usefulness” of particular actions, but did not provide a precise working definition for242

it. In this section we consider a specific computational model for directed exploration, and test243

this model in view of these experimental findings. The model is a general-purpose algorithm244

for directed exploration, which formalizes the intuition that the challenge of exploration in245

complex environments is analogous to the standard credit-assignment problem in RL (in the246

reward-maximization sense).247

According to the model, the agent observes the current state of the environment s at each248

time-step and chooses an action a from the set of possible actions. In response to this action,249

the environment transfers the agent to the next state s′, at which the agent chooses action a′.250

Each state-action pair (s, a) is associated with an exploration value, denoted E (s, a) (Fox et al.,251

2018). These exploration values represent a current estimate of “missing knowledge”, such that252

a high value indicates that further exploration of that action is beneficial. At the beginning253

of the process, E-values are initialized to a positive constant (specifically E = 1), representing254

the largest possible missing knowledge. Each transition from s, a to s′, a′ triggers an update to255

E (s, a) according to the following update rule:256

E (s, a)← E (s, a) + η (−E (s, a) + γE (s′, a′)) (1)

In words, the change in E (s, a) is a sum of two contributions. The first, −E (s, a), is the257
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immediate reduction in the uncertainty regarding state s and action a due to the current visit258

of that state-action. The second, γE (s′, a′) represents future uncertainty propagating back to259

(s, a). This second part is weighted by a discount-factor parameter, 0 ≤ γ ≤ 1. The overall260

update magnitude is controlled by a learning-rate parameter 0 < η < 1. In the particular case261

that s′ is a terminal state, its exploration value is always defined as 0.262

To complete the model specification, we define the policy as derived directly from these explo-263

ration values. We use a standard softmax policy, in which the probability of choosing an action264

a in state s is given by:265

π (a|s) = eβE(s,a)∑
a′ e

βE(s,a′)
(2)

where β ≥ 0 is a gain parameter. A gain value of β = 0 corresponds to random exploration,266

with all actions chosen at equal probability, while a positive gain corresponds to (stochastically)267

preferring actions associated with a larger E-value (and hence higher uncertainty).268

Conceptually, this model is similar to standard RL algorithms (specifically the sarsa algroithm,269

Rummery and Niranjan, 1994) that are used to account for operant learning in animals and270

humans. There, a similar update rule is used to learn the expected discounted sum of future271

rewards (and a similar rule is assumed for action-selection). Therefore, similar cognitive mech-272

anisms that account for operant learning, can account for this type of directed exploration (at273

least to the extent that standard RL models are indeed a good descriptions of operant learning;274

see Mongillo et al., 2014; Fox et al., 2020).275

To gain insight into the properties of the E-values, we consider first the case of “infinite”276

discounting, namely γ = 0. In that case, the update rule of Equation 1 becomes:277

E (s, a)← (1− η)E (s, a) (3)

and hence, after n visits of (s, a), the associated E-value is E (s, a) = (1− η)n, such that278

− logE ∝ n.1 In other words, when γ = 0, and long-term consequences are completely ignored,279

the E-value is effectively a visit-counter.280

When γ > 0, the change in the value of E (s, a) following a visit of (s, a) is more complex.281

In addition to the decay term, a term that is proportional to E (s′, a′) is added to E (s, a).282

Notably, E (s′, a′) depends on the number of past visits of (s′, a′), (as well its own future states283

(s′′, a′′) and so on). Consequently, the number of actual visits that is required to reduce the284

E-values by a given amount is larger in state-actions leading to many future states than in285

state-actions leading to fewer future states. In that sense, the E-values are a generalization of286

visit-counters.287

Finally (and regardless of the value of γ), the softmax policy of Equation 2 favors actions asso-288

ciated with larger E-values. Because choosing these actions will generally lead to a reduction289

in their associated E-values, the result will be a policy that effectively attempts to equalize the290

E-values of all available actions (within a given state). In the case of γ = 0, this will result291

in a preference toward those actions that were chosen less often. In the case of γ > 0, it will292

result in a preference that is also sensitive to (the number of) future potential states reachable293

through the different actions.294

To conclude, the model therefore encapsulates the three principles identified in human be-295

havior – it propagates information to track long-term uncertainties associated with individual296

1because η < 1, we have that log (1− η) < 0.
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state-actions, it temporally discounts future exploratory consequences, and it uses estimated297

uncertainties to derive a behavioral policy.298

Directed-exploration in the maze task299

We now return to the maze task and study the behavior of the model there. In state MR,300

where the E-values correspond to visit-counters, the attempt to equalize the E-values will301

result in a bias against repeating the same action, yielding a low prepeat value and on average,302

a uniform policy. To demonstrate this, we simulated behavior of the model in the 3 conditions303

of Experiments 1. Indeed, as depicted in Figure 6a, the values of prepeat in the simulations were304

smaller than chance-level. Unlike the population of human participants, simulated agents are305

more homogeneous, as reflected in the narrower histograms of prepeat. This is due to the fact306

that the model is designed to perform directed exploration, that is, to model the behavior of307

the “good” directed explorers. Nevertheless, the model can also produce random exploration if308

the gain parameter is set to β = 0 (see also Discussion).309

More interesting is the behavior of the model in state S. The larger nR, the smaller will be310

the decay of E (s = S, a = right) per a single visit of (s = S, a = right). Therefore, the model311

will tend to choose “right” more often (pR > 0.5), a bias that is expected to increase with nR.312

Indeed, similar to the behavior of the “good” human explorers, the simulated agents exhibited313

a preference towards “right” in S, a preference that increased with nR − nL (Figure 6b).314

The model is sensitive to long-term consequences because it propagates future uncertainty, from315

the next visited state-action back to the current state-action. This future uncertainty, however,316

is weighted by γ < 1, such that the effect of further away states on E (s, a) is expected to317

decrease with distance. In the environments of experiment 2, where we manipulated the depth318

of MR (relative to S), this will result in a decrease of the bias (pR) at S, as demonstrated in319

Figure 6c.320

Because the policy in the model is derived from the E-values, the temporal pattern of ex-321

ploration is expected to be transient. In the first episodes, when E (s = S, a = right) =322

E (s = S, a = left), the result is pR = 0.5. With sufficient learning, exploration values of all323

visited state-actions decay to 0 and in this limit, pR = 0.5 as well. Therefore, we expect the324

learning dynamics to exhibit a transient increase in bias, followed by a decay back to chance325

level. This is demonstrated in Figure 6d where we plot pR (t), averaged over the simulations of326

the model in all six conditions of Experiments 1 and 2.327

Qualitatively, the transient dynamics resemble the experimental results (Figure 5b). However,328

there are two important differences. First, while the human participants exhibited what seems329

like a steady-state bias even at the end of the experiment, pR in the model decays to chance level.330

As discussed above, the decay to chance in the simulations is expected because exploration in331

the model is uncertainty-driven. In the framework of this model, steady-state exploration can332

be achieved if we assume that β is not stationary, but rather increases over episodes. However,333

we hypothesize that to capture this aspect of humans’ exploration, we may need to go beyond334

this class of uncertainty-driven models. Second, the transient dynamics of the model are longer335

than that of the human participants. While the learning speed in the model is largely controlled336

by the learning-rate parameter η, the value of η cannot by itself explain this gap. This is because337

in the model η < 1, and the dynamics cannot be arbitrarily fast. Particularly, in the simulations338
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Figure 6: Simulations results. Simulating behavior of the E-values model (Equation 1–2) reproduces the
main findings of directed exploration in the maze task. (a) InMR, the model exhibits directed exploration which
manifests in low values of prepeat (shown for the 3 conditions of Experiment 1; dashed line denote chance-level
expected for random exploration, 1/nR) (b) In the environments of Experiment 1, agents exhibited bias towards
MR that increased with imbalance of nR : nL, reflecting the propagation of long-term uncertainties over states.
(c) In the environments of Experiment 2, the bias decreased with depth, reflecting temporal discounting.
(d) Bias towards MR peaks transiently, followed by a decay to baseline at steady-state, as expected from
uncertainty-driven exploration (average results over all 6 environments). Results are based on 3,000 simulations
in each environment. Bars and histograms in (a)-(c) are shown for the first 20 episodes for comparison with the
behavioral experiments. Error bars are negligible and therefore are not shown. Model parameters: η = 0.9, β =
5, γ = 0.6.

of Figure 6d we have used a large learning-rate of η = 0.9, but learning was still considerably339

slower compared to human participants. We further discuss the issue of learning speed in the340

next section.341

Learning dynamics: 1-step updates and trajectory-based updates342

To learn to prefer “right” in S, the agent needs to learn that this action leads, in the future,343

to MR, which from an exploratory point of view is superior to ML. This kind of learning of344

delayed outcomes is typical of RL problems, in which the agent needs to learn that the value345

of a particular action stems from its consequences, which can be delayed. For example, an346

action may valuable because it leads to a large reward, even if this reward is delayed. In the347

RL literature this is known as the credit assignment problem, because during learning, upon348

observing a desired outcome (in “standard” RL, getting a large reward; here, arriving at MR),349

the agent needs to properly assign credit for past actions that have led to this outcome.350

RL algorithms typically address the credit assignment problem by propagating information351
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about the reward backwards through sequences of visited states and actions (Sutton, 1988;352

Watkins and Dayan, 1992; Dayan, 1992). According to some RL algorithms, the information353

about the reward propagates backwards one state at a time. By contrast, in other algorithms, a354

trace of the entire trajectory is maintained, allowing the information to “jump” backwards over a355

large number of states and actions. We refer to these alternatives as 1-step and trajectory-based356

updates, respectively.357

The E-values model can be understood as an RL algorithm that propagates visitations infor-358

mation (rather than reward information). Specifically, it uses 1-step updates (Equation 1) such359

that with each observation (a transition of the form s, a, s′, a′) only immediate information,360

from (s′, a′), is used to update the exploration value of (s, a). With 1-step updates it takes time361

(episodes) for information from MR to reach back to S. We hypothesized that this reliance362

on 1-step updates might be an important source for the difference in learning speed between363

the model and humans, who might use more temporally-extended learning rules. To test this,364

we considered an extension to the exploration model in which E-values are learned using a365

trajectory-based update rule. Technically, this corresponds to changing the TD algorithm of366

Equation 1 to a TD (λ) algorithm (see Methods, Algorithm 1). Simulating this extended model367

we found that, similar to the original model, it reproduces the main experimental findings368

(Figure S1, compare with Figure 6). Moreover, as predicted, learning is faster than that the369

learning in the original model (Figure S1d, compare with Figure 6d). Nevertheless, even this370

faster learning is still slower than the rapid learning observed in human participants, suggesting371

further components of human learning that are not captured by either of the models (we get372

back to this point in the Discussion).373

Another way of distinguishing between 1-step and trajectory-based updates is to consider the374

predictions they make in Experiment 2. Recall that the three conditions in Experiment 2 differ375

in the delay (in the sense of number of states) between S and MR. If information (about the376

exploratory “value” of MR) propagates one step at a time, then the time it takes to learn that377

“right” is preferable in S will increase with the delay: it will be shortest in Condition 1, in which378

MR and ML are merely one step ahead of S, and longest in Condition 3, in which MR and ML379

are three steps away from S (Figure 7, top left). By contrast, if information about MR and ML380

can “jump” directly to S within each episode, as in trajectory-based updates, learning speed381

will be comparable in all three conditions (Figure 7, top right). A more thorough analysis of382

the model dependence on the parameters γ and λ is depicted in Figure S2. Finally, Figure 7383

(bottom) depicts the learning dynamics of the “good” human explorers, analyzed separately384

in the three conditions of Experiment 2. We did not find evidence supporting the hypothesis385

that learning time increases with depth. These results further support the hypothesis that386

human learning relies on more global, temporally-extended update rules in which information387

can “jump” backwards over several states and actions.388
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Figure 7: 1-step backups and trajectory-based updates. Learning dynamics simulated by the E-values
model using the 1-step backup learning rule of TD (0) (Equation 1–2; top left) and the trajectory-based learning
rule TD (λ) (Methods, Algorithm 1; top right) in the 3 environments of Experiment 2. With TD (0), the depth
of MR relative to S (depth = 1, 2, 3) affects both the peak value of pR (t) (due to temporal discounting) and
the time it takes the model to learn (due to the longer sequence of states over which the information has to be
propagated). By contrast, with TD (λ), different depths result in a different maximum bias (due to temporal
discounting), but the learning time is comparable (because information is propagated over multiple steps in
each update). For the same reason, learning is overall faster with TD (λ). In humans (bottom), peak bias
decreased with depth (consistent with temporal-discounting), but there was no noticeable difference in learning
speed (consistent with trajectory-based updates). Learning curves of human participants are shown with a
moving-average of 3 episodes. Dots and shaded areas denote means and 70% confidence intervals of pR (t).
Model results are average over 30, 000 simulations; model parameters: η = 0.9, β = 5, γ = 0.6, and λ = 0.6 (for
the TD (λ) model).
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Discussion389

Exploration is a wide phenomenon that has been linked to different aspects of behavior, includ-390

ing foraging (Mobbs et al., 2018; Kolling and Akam, 2017), curiosity (Gottlieb and Oudeyer,391

2018), and creativity (Hart et al., 2018). In this study, we focused on exploration as part of392

learning. For that, we use the framework of RL, in which exploration is an essential component.393

Particularly, we study the computational principles underlying human exploration in complex394

environments – sufficiently complex such that exploration per se requires learning, due to de-395

layed and long-term consequences of actions. Our approach builds on the analogy between the396

challenges of learning to explore, and the challenges of learning to maximize reward – the latter397

being the standard RL scenario. In both cases, the agent needs to represent information, prop-398

agate it, and use it to choose actions. In the former case it is information about uncertainty399

and in the latter it is information about expected reward.400

We found that while exploring in complex environments, humans are sensitive to long-term401

consequences of actions and not only to local measures of uncertainty. Moreover, such long-402

term exploratory consequences are temporally-discounted, similar to the discounting of future403

rewards. Finally, the dynamics of exploration is consistent with the predictions of uncertainty-404

driven exploration, in which directed exploratory behavior peaks transiently, and then decay405

to a more random exploration (supposedly when most of the uncertainty have been resolved).406

To account for these experimental results, we introduce a computational model that uses a407

RL-like learning rule implementing the aforementioned principles. In the model, information408

about state-action visits, rather than about reward as in standard RL algorithms, is being409

propagated (and discounted) over sequences visited state-actions. This results in a set of410

“exploration values” (analogous to reward-based values) which are then used to choose actions.411

Directed exploration beyond bandit tasks Previous studies have identified some com-412

ponents of directed exploration in human behavior using bandit tasks (Wilson et al., 2014;413

Gershman, 2018, 2019), particularly, the use of counter-based methods such as Upper Confi-414

dence Bounds (UCB, Auer et al., 2002). Going beyond the bandit, we were able to show that415

these counter-based strategies might be a special case implementation (appropriate for bandit416

tasks) of more general principles. To study and identify these principles, it is therefore neces-417

sary to test human exploration in environments that are more complex than the bandit task.418

Indeed a more recent study have shown that more general principles might underlie human419

exploration, both random and directed, in sequential tasks (Wilson et al., 2020). However,420

unlike our experiments, in that study actions did not have long-term consequences in the sense421

of state transitions. Finally, the necessity of going beyond simple bandit tasks is not unique422

to the study of exploration alone. It is present also when studying other components of RL423

algorithms underlying operant learning. For example, it is impossible to distinguish in a bandit424

task between model-based and model-free RL, because there is no “model” to be learned in those425

tasks (Daw et al., 2011).426

Non-stationary aspects of exploration While the analogy between learning to explore427

and learning to maximize rewards is a useful one, there are some important differences. One428

difference is that while in RL, rewards (more precisely, the distribution thereof) are typically429

assumed to be Markovian and stationary, exploration has a fundamental non-stationary nature.430

This is due to the fact that if exploration is interpreted as part of the learning process, or is431
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uncertainty driven, then the exploratory “reward” from a given state-action will decrease over432

time, because uncertainty will reduce with visits of that state-action. This non-stationarity433

poses a challenge for exploration algorithms. The E-values model circumvents that by assum-434

ing a stationary (and constant) zero fictitious “reward”, combined with an optimism bias at435

initialization (Fox et al., 2018).436

A different solution to the challenge of non-stationarity is to posit an exploration objective437

function which is by itself independent of learning. The predictions of the two classes of438

models differ with respect to the expected steady-state behavior. In the former, exploration439

will diminish over time while in the latter, it will be sustained. The observation that human440

participants maintain a preference (albeit relatively small) for “right” even at the end of the441

experiment suggests that human exploration is driven, at least in part, by more than just442

uncertainty. A more complete characterization of these two components will be an interesting443

topic for future work.444

Pure-exploration and the role of reward It has been long argued that at least part of445

human and animal behavior is driven by intrinsic motivation, which is largely independent of446

external rewards (Oudeyer and Kaplan, 2009; Barto, 2013). Pure exploration tasks can be447

used to characterize aspects of such intrinsic motivation. In this study, the “desire” to visit448

less-visited states is one such intrinsic motivation factor. Additional factors that are based on449

information-theoretic quantities (Still and Precup, 2012; Little and Sommer, 2014; Houthooft450

et al., 2016) or prediction errors of non-reward signals (Pathak et al., 2017; Burda et al., 2019)451

have also been proposed in the literature. While many of these will, in general, be correlated,452

and hence difficult to identify experimentally, we believe that future studies of pure-exploration453

in complex environments will allow to better relate these concepts, mostly discussed in the454

theoretical and computational literature, to the learning and behavior of humans and animals.455

To dissect the exploratory component of behavior, we focused on a pure-exploration, reward-456

free task. This allowed us to neutralize the exploration-exploitation dilemma, focusing on the457

unique challenges for exploration itself. More generally, we expect the identified exploration458

principles to be relevant also in the reward maximization scenario. Indeed, it has been shown459

theoretically and empirically that the naive use of counter-based methods (or other “local”460

exploration techniques) can be highly sub-optimal for learning an optimal policy (in the re-461

ward maximization sense) in complex environments (Osband et al., 2016a,b; Chen et al., 2017;462

Fox et al., 2018; Oh and Iyengar, 2018). How humans deal with the exploration-exploitation463

dilemma in complex environments is an important open question.464

Implications for neuroscience Algorithms such as TD-learning hold considerable sway465

in neuroscience. For example, it is generally believed that dopaminergic neurons encode re-466

ward prediction errors, which are used for learning the “values” of states and actions (Schultz467

et al., 1997; Glimcher, 2011, but see also Elber-Dorozko and Loewenstein, 2018). More recent468

studies suggest that in fact, the brain maintains a separate representation of different reward469

dimensions (Smith et al., 2011; Grove et al., 2022). Given that our formalism of uncertainty470

(E-values) is identical to that of other types of value, it would be interesting to test whether471

the representation of uncertainty in the brain is similar to that of other reward types. For472

example, whether dopaminergic neurons also represent the equivalent of E-values TD-error.473

Along the same lines, it would be interesting to check whether the finding that dopaminergic474

neurons encode what seems to be reward-independent features of the task (Engelhard et al.,475
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2019) can be better understood assuming that uncertainty is a reward-like measure.476

Heterogeneity There was a substantial heterogeneity among participants in both Exper-477

iments 1 and 2. We used this heterogeneity to divide participants into “good” and “poor”478

explorers in terms of the “directedness” of their exploration. However, this division is some-479

what crude. For example, while bias in favor of MR was smaller in the “poor” explorers, it480

was still larger than the baseline level of 0.5 predicted by a true random exploration behav-481

ior (Figure 5a). This separation can be understood as a first approximation, highlighting the482

more prominent source of exploratory behavior at the individual subject basis. Moreover, even483

within the “good” explorers, there was considerable variability. Heterogeneity in the parameters484

of the computational model can, perhaps, explain some of the heterogeneity, but parameters485

variability alone (within the E-values model) certainly cannot explain all of the heterogeneity in486

participants’ behavior. For example, consider again the division to “poor” and “good” directed487

explorers. In principle, such a division could be modeled through the gain parameter β, with488

random explorers having a value of β = 0 (and directed explorers a value of β > 0). Even with489

random exploration, the model prediction for prepeat is 1/nR. By contrast, many participants490

exhibited values of prepeat larger than this chance-level, all the way up to prepeat = 1. Similarly,491

considering behavior at S as measured by pR, no combination of model parameters predict492

pR values which are smaller than 0.5. This is because even random exploration will result in493

pR = 0.5. Values of pR that are close to 1 are also impossible in the model, because they imply494

under-exploration of the left-hand-side of the maze. Yet some human participants exhibited495

extreme (close to 0 or 1) values of pR. Other factors, such as (task-independent) choice bias496

(Baum, 1974; Laquitaine et al., 2013; Lebovich et al., 2019) and tendency to repeat actions497

(Urai et al., 2019) are likely to contribute to participants’ choices.498

Learning speed Another limitation of the model is the gap between the learning speed of499

human participants and the learning speed of the model. Overall, humans learned considerably500

faster than the model, even with a large learning-rate. On average participants exhibited a501

bias as soon as the 3rd episode, which is faster than the theoretical limit possible for the TD(0)502

model in this task. While some of this discrepancy can be attributed to the model’s reliance503

on 1-step backups, it is noteworthy that even in comparison with TD(λ), humans’ learning504

is faster than the that of the model. The rapid learning in humans suggest mechanisms that505

go beyond simple model-free learning as implemented in our models. In our model, the fact506

that “right” is favorable can only be learned implicitly, by actually visiting more unique states507

following MR (compared to ML). This is because the only information that is available to the508

agent is the identity of states and actions. By contrast, a single visit of both MR an ML is509

likely sufficient for humans to learn that the number of doors inMR is larger than inML, a fact510

which can by itself bias their following choices in favor of “right”. Indeed by using this (possibly511

salient) feature, of the number of doors, as an explicit part of the state representation, one512

could infer that MR is more favorable over ML already after 2 episodes even with model-free513

learning. While such strategy is not as general as the computational principles encapsulated514

by our models, in the specific task at hand it will be rather effective. The ability of humans515

to rapidly form and utilize such heuristics and generalizations is likely an important part of516

their ability to rapidly adapt and learn in novel situations. The interplay between basic, more517

general-purpose, computational principles, and heuristic, more ad-hoc, principles remains an518

important challenge for computational modeling in the cognitive sciences.519
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Generalization, priors, and “natural” exploration The goal of this study was to identify520

computational principles underlying exploration in a “general” setting. To that goal, we used a521

task in which the semantic content attached to states was minimal, with no a-priori indication522

of any structure (temporal, geometric, spatial, etc.) of the state-space. The motivation behind523

this design was to de-emphasize, as much as possible, behavior components stemming from par-524

ticipants’ prior knowledge and generalization abilities, and focus on core exploratory strategies.525

This also justified the models that we used: general-purpose, simplistic, learning models that526

operate on an abstract notion of states and actions. On the other hand, the abstract design of527

the task limits its applicability to more realistic tasks and natural behavior. Indeed in complex528

environments, it has been demonstrated that humans rely largely on both priors and generaliza-529

tions to achieve efficient learning and exploration (Dubey et al., 2018; Schulz et al., 2020). How530

such priors, semantic knowledge, and generalization interact with more abstract and general531

principles of exploration and decision-making is an important open question. Notably, we have532

found that humans are capable of performing directed exploration of complex environments533

even in the absence of a readily-available semantic structure to guide their exploration. This is534

in contrast to the recent work of Brändle et al. (2022), that demonstrated directed exploration535

(interpreted as driven by the information-theoretic quantity of empowerment) in complex en-536

vironments with available semantic structure, that was not observed in a structurally identical537

task where the semantic structure has been masked.538

Methods539

Online experiments and data collection540

The study was approved by the Hebrew University Committee for the Use of Human Sub-541

jects in Research. Participants were recruited using the Amazon MechanicalTurk online plat-542

form, and were randomly assigned to one of the conditions in each experiment. Participants543

were instructed to “understand how the rooms are connected”, and were informed regarding544

the test phase: “At the end of the task, a test will check how quickly can you get from545

one specific room to a different one.”. The training phase of the experiment consisted of546

120 trials, corresponding to 20 episodes. Between 20% to 30% of participants (depending547

on the experiment and condition) performed a longer experiment of 250 trials corresponding548

to 42 episodes, but for these participants only the first 20 episodes were analyzed. The end549

of each episode (reaching the terminal state T ) was signaled by a message screen (“Youv’e550

reached a dead-end room, and will be moved back to the first room”). After the training551

episodes, there was a test phase in which participants were asked to navigate to a target552

room in the minimal number of steps possible, starting from a particular start room (which553

was not the initial state S). An online working copy of the experiment can be accessed at:554

https://decision-making-lab.com/lf/eee_rep/Instructions.php .555

For each participant, we recorded the sequence of visited rooms (states) and chosen doors (ac-556

tions), in the train and test phases. No other details (including demographics details, question-557

naire, or comments about the experiment) were collected from participants. Test performance558

was used as a criterion for filtering. Out of the total participants who finished the experiment559

(i.e., finished both training and test phases), we rejected those who did not finish the test560

phase in a number of steps smaller than expected by chance (e.g., the expected number of561

steps it would take to reach the target by random walk). We also rejected participants who,562
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during training, did not choose both “right” and “left” at least twice. The test start and target563

rooms were identical for all participants, and were chosen as to maximize the difference between564

performance (i.e., number of steps) expected by chance to that of the optimal (shortest path)565

policy. The number of participants in each experiment is given in Table 1, and their division566

into “Good” and “Poor” explorers is given in Table 2.567

Exp. Env. Completed Included

1
3 : 4 191 161
2 : 5 174 120
1 : 6 176 137

2
d = 1 244 191
d = 2 269 205
d = 3 282 238

Table 1: Number of participants in Experiments 1 and 2.

Exp. Env. “good” explorers “poor” explorers

1
3 : 4 66 95
2 : 5 53 67
1 : 6 71 66

2
d = 1 92 99
d = 2 84 121
d = 3 85 153

Table 2: Participant groups in Experiments 1 and 2

Estimating policy from behavior568

For the average results, we computed for each participant their pR value as the number of569

“right” choices divided by the total (and fixed) number of visits to S. Similarly, prepeat was570

calculated for individual participants as the number of visits to MR in which the chosen action571

was identical to the one chosen in their previous visit of MR, divided by the total visits of MR572

minus one. Note that the total number of visits to MR was different for different participants,573

as it depended on their policy at S. We have used the same measurements for the results of574

the model simulations for consistency. Note that, in principle, the model allows to measure the575

policy of individual agents (at individual time-points) directly, without the need to estimate it576

from behavior (i.e., the generated stochastic choices). To estimate learning dynamics, we can577

no longer estimate pR (t) on an individual level, because each participant only made one binary578

choice at a given episode. Therefore, we computed pR (t) at the population level, as the number579

of participants who chose “right” in the tth episode divided by the total number of participants580

(possibly within a particular group, for example only “good” explorers). Alternatively, when581

considering specific experimental conditions, we have estimated pR (t) for individual participants582

using a moving-average over a window of 3 consecutive episodes.583

Statistical analysis584

Confidence Intervals (CI) for pR were computed using bootstrapping, by resampling participants585

and choices. Comparisons between different conditions were computed using a permutation586
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test, by shuffling all participants of the two groups being compared, and resampling under the587

null hypothesis of no group difference. With this resampling we computed the distribution of588

pR (A) − pR (B) for two random shuffled groups of participants A and B. Reported p-value is589

the CDF of this distribution evaluated at the real (unshuffled) groups.590

TD (λ) learning for E-values591

We start by proving a short, non-technical description of the TD and TD (λ) value-learning592

algorithms. The value of a state-action (denoted Q (s, a)), is defined as the expected sum of593

(discounted) rewards achieved following that state-action. The goal of the algorithms is to594

learn these values. To that end, the agent maintains and updates estimates Q̂ (s, a) of the595

true state-action values Q (s, a). In TD-learning, Upon observing a transition (s, a, r, s′, a′), the596

estimated value (Q̂ (s, a)) is updated towards r + γQ̂ (s′, a′). Crucially, Q̂ (s′, a′) is also, on its597

own, an estimated value. This usage of (a part of) the current estimator to form the target598

for updating the same estimator is known as bootstrapping. TD learning therefore breaks the599

estimation of value – the sum of rewards – into two parts: the first reward, which is taken from600

the environment, and the rest of the sum, which is bootstrapped.601

It is possible, however, to estimate the values while breaking the sum of rewards in other ways.602

For example one could sum the first two rewards based on observations, and bootstrap the rest,603

that is, from time-step 3 on-wards. Importantly, this would result in information (about the604

rewards) propagating backwards 2-steps in a single update, rather than 1-step. More generally,605

breaking the sum after n steps will result in an n-step backup learning rule. It is also possible606

to average multiple n-step backups in a single update. The TD (λ) algorithm is a particular607

popular scheme to do that: it can be understood as combining all possible n-step backups,608

with a weighting function that decays exponentially with n (i.e., the weight given to the n-step609

backup is λn−1, where λ is a parameter). With λ = 0 the algorithm recovers the standard610

1-step backup algorithm, or in other words, TD (0) is simply TD. A value of λ = 1 corresponds611

to no bootstrapping at all, relying instead on Monte Carlo estimates of the action value by612

collecting direct samples (sum of rewards over complete trajectories).2613

Equation 1 can be understood as a TD algorithm (specifically, using the sarsa algorithm614

(Rummery and Niranjan, 1994; Sutton and Barto, 2018)) in the particular case that all the615

rewards signals are assumed to be r = 0, and estimates are initialized at 1. The extended model616

(Algorithm 1) is a direct generalization of that correspondence to the TD (λ) case.617
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Algorithm 1 TD (λ) learning for E-values
Require: Parameters η, λ, γ
Initialize E (s, a) = 1 for all s, a
for all episodes do

set ε (s, a) = 0 for all s, a . eligibility-traces
set τ = {} . trajectory in this episode
set s to the initial state and choose action a
while s is not a terminal state do

sample the next state and action s′, a′
increment ε (s, a)← ε (s, a) + 1, and concatenate (s, a) to τ
for all (st, at) in τ do

E (st, at)← E (st, at) + ηε (st, at) (γE (s′, a′)− E (s, a)) . update E-value
ε (st, at)← γλε (st, at) . decay eligibility-trace

end for
s← s′, a← a′

end while
E (s, a)← (1− η)E (s, a) . update in terminal-state

end for
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Figure S1: Simulations results of TD (λ). Simulating behavior of the E-values model with the TD (λ)
learning rule (Methods, Algorithm 1) reproduces the main findings of directed exploration in the maze task.
(a) In MR, the model exhibits directed exploration which manifests in low values of prepeat (shown for the 3
conditions of Experiment 1; dashed line denote chance-level expected for random exploration, 1/nR) (b) In the
environments of Experiment 1, agents exhibited bias towards MR that increased with imbalance of nR : nL,
reflecting the propagation of long-term uncertainties over states. (c) In the environments of Experiment 2, the
bias decreased with depth, reflecting temporal discounting. (d) Bias towards MR peaks transiently, followed
by a decay to baseline at steady-state, as expected from uncertainty-driven exploration (average results over all
6 environments). The learning dynamics is faster than that of the 1-step update model. Results are based on
3,000 simulations in each environment. Bars and histograms in (a)-(c) are shown for the first 20 episodes to
match the behavioral experiments. Model parameters: η = 0.9, β = 5, γ = 0.6, λ = 0.6.
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Figure S2: Model parameters. Learning curves of the TD (λ) model in the 3 environments of Experiment 2
for different values of γ,λ (with fixed η = 0.9, β = 5). With infinite discounting (γ = 0), future consequences
are neglected, resulting in a uniform (counter-based like) policy with no bias. With no discounting (γ = 1),
information from the terminal state T dominates, resulting in a bias towards “right” (since there are more routes
to the terminal states via the “right” branch) that is not dependent of the depth ofMR. For intermediate values
of γ, transient exploration opportunities (i.e., in MR) becomes important, resulting in a bias towards MR that
decreases with depth, reflecting temporal-discounting. In this regime, one-step backup learning rule (λ = 0)
results in difference learning speed for different depths, while for trajectory-based learning rules (λ > 0) learning
speed is comparable for the different depths. Each learning curve is the average of 30, 000 simulations.
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