
RESEARCH ARTICLE

Paradoxical relationship between speed and

accuracy in olfactory figure-background

segregation

Lior LebovichID
1☯, Michael YunermanID

2☯, Viviana Scaiewicz2, Yonatan Loewenstein1,3,4,

Dan RokniID
2*

1 The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel,

2 Department of Medical Neurobiology, School of Medicine and IMRIC, The Hebrew University of Jerusalem,

Jerusalem, Israel, 3 The Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem,

Israel, 4 Department of Cognitive Sciences and The Federmann Center for the Study of Rationality, The

Hebrew University, Jerusalem, Israel

☯ These authors contributed equally to this work.

* dan.rokni@mail.huji.ac.il

Abstract

In natural settings, many stimuli impinge on our sensory organs simultaneously. Parsing

these sensory stimuli into perceptual objects is a fundamental task faced by all sensory sys-

tems. Similar to other sensory modalities, increased odor backgrounds decrease the detect-

ability of target odors by the olfactory system. The mechanisms by which background odors

interfere with the detection and identification of target odors are unknown. Here we utilized

the framework of the Drift Diffusion Model (DDM) to consider possible interference mecha-

nisms in an odor detection task. We first considered pure effects of background odors on

either signal or noise in the decision-making dynamics and showed that these produce dif-

ferent predictions about decision accuracy and speed. To test these predictions, we trained

mice to detect target odors that are embedded in random background mixtures in a two-

alternative choice task. In this task, the inter-trial interval was independent of behavioral

reaction times to avoid motivating rapid responses. We found that increased backgrounds

reduce mouse performance but paradoxically also decrease reaction times, suggesting that

noise in the decision making process is increased by backgrounds. We further assessed the

contributions of background effects on both noise and signal by fitting the DDM to the behav-

ioral data. The models showed that background odors affect both the signal and the noise,

but that the paradoxical relationship between trial difficulty and reaction time is caused by

the added noise.

Author summary

Sensory systems are constantly stimulated by signals from many objects in the environ-

ment. Segmentation of important signals from the cluttered background is therefore a

task that is faced by all sensory systems. For many mammalians, the sense of smell is the

primary sense that guides many daily behaviors. As such, the olfactory system must be
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able to detect and identify odors of interest against varying and dynamic backgrounds.

Here we studied how background odors interfere with the detection of target odors. We

trained mice on a task in which they are presented with odor mixtures and are required to

report whether they include either of two target odors. We analyze the behavioral data

using a common model of sensory-guided decision-making—the drift-diffusion-model.

In this model, decisions are influenced by two elements: a drift which is the signal pro-

duced by the stimulus, and noise. We show that the addition of background odors has a

dual effect—a reduction in the drift, as well as an increase in the noise. The increased

noise also causes more rapid decisions, thereby producing a paradoxical relationship

between trial difficulty and decision speed; mice make faster decisions on more difficult

trials.

Introduction

Natural scenes are cluttered and sensory systems must be able to parse these scenes to detect

and identify individual objects such as food, a mate, or a predator. Scene segmentation is criti-

cal for all sensory modalities yet the neural mechanisms that underlie this feat are not very well

understood. While these mechanisms have been extensively studied in the visual and auditory

modalities [1–7], very little is known about scene segmentation of olfactory scenes [8–11].

We have previously developed a psychophysical paradigm for testing detection of target

odors against background mixtures in mice [10]. Utilizing this paradigm, we found that the

ability to report whether a target odor is present decreases when the number of background

odors is increased. Additionally, we found that the overlap between the glomerular activation

patterns that represent the target, and those that represent the background odors, was inversely

correlated with success rate. This result suggested that background odors may interfere with

target-odor detection already at the level of olfactory receptors. Indeed, many studies demon-

strated non-linear interactions between odorants activating the same receptor [12–19], and

recent studies suggest such interactions are widespread [3,20,21]. However, it is currently

unclear how these interactions affect target odor detection and in what way do they interfere

with the target signal.

The drift-diffusion model (DDM) has been instrumental in providing insights into the

effects of sensory signals on success rate and reaction times in sensory-guided tasks [3,22–27].

According to the DDM, the decision process is determined by a noisy decision variable, which

reflects the difference between the accumulated evidence in favor of choosing each of the two

alternatives (in this case, the presence vs the absence of the target odor). The decision is made

once the decision variable reaches one of two thresholds, ±θ, where θ>0, for the first time. If

the decision variable first reaches one of them (θ), the decision is to report that the target is

present whereas if it first reaches the other (−θ), it reports that the target is absent.

The DDM is characterized by several parameters: the first parameter is the starting point

mθ (−1<m<1), which denotes an a-priori, evidence-independent preference towards one of

the outcomes. m = 0 indicates an unbiased starting point. An a-priori preference towards

reporting that the target is present or absent manifests as a positive or negative value of m,

respectively. The second parameter is the threshold θ>0. The larger the value of θ, the more

evidence is required in order to reach a decision. Third is the average rate of evidence accumu-

lation in the presence and in the absence of the target, which we denote by A+ and A−, respec-

tively. We assume that in absence of any odors, A0
�
< 0, which biases the decision variable in

the direction of the −θ threshold and the decision that the target is absent. By contrast, when
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the target odor is presented to the animal, A0
þ
> 0 and as a result, the decision variable drifts

(on average) towards the θ threshold. Finally, the decision variable also accumulates white

noise in the decision process, and the magnitude of this noise is denoted by c2
0

[3,22,27–30].

In this framework, there are at least three different mechanisms by which background

odors can interfere with target odor detection. First, they may increase the evidence in favor of

the target, thus generating a false target-like signal even when the target is absent, resulting in

an increased false-alarm rate. Second, they may reduce the evidence in favor of the target,

thereby decreasing the hit rate. Finally, they may act by increasing the noise in the decision-

making process. Here we analyze the predictions of the DDM for each of these modes of inter-

ference and compare them to experimental observations. We then fit the DDM to the behav-

ioral data to assess the contributions of background effects on signal and noise in the decision-

making process.

Results

We trained mice to detect target odorants against background mixtures. The task is similar to

the one previously used [10], but modified from a go/no go to a two-alternative choice reaction

time design to allow analysis of reaction times in all trials. In each trial, mice were presented

with a pseudorandom odorant mixture. Mixtures either included one of two target odorants

(“target-on” trials), or neither of the target odorants (“target-off” trials). Mice were rewarded

with a water drop if they correctly reported whether the mixture contained a target odorant by

licking to the right in target-on trials and licking to the left in target-off trials (Fig 1). To avoid

motivating rapid responses, the inter-trial interval was independent of response time, but was

5 seconds longer following incorrect responses. The rate of rewards was therefore dependent

on the correct rate, but not the speed of behavioral responses. We trained 6 mice and collected

an average of 16790 trials per mouse (range 12000–23000).

We considered three different mechanisms by which background odorants can affect deci-

sions in the framework of the DDM and studied their behavioral predictions:

1. False signal: Individual odors activate a large number of olfactory receptors. It is most likely

that many of the target-activated receptors are also activated by the background odors [10].

Therefore, it is possible that the addition of background odorants to the odor mixture will

manifest as an increase in the drift rates both in the presence of a target odor (A+) and in its

absence (A−). The larger the number of background odors, the larger the drift rates would

be.

2. Signal reduction: Background odors, however, also activate olfactory receptors that are not

activated by the target odors. Since inhibitory interactions are common in second and third

order olfactory brain regions [31–38], addition of background odorants may inhibit target-

associated signals. Such interactions are predicted to manifest as a decrease in the drift rates

both in the presence of a target odor (A+) and in its absence (A−). The magnitude of the

decrease would be a monotonic function of the number of background odors.

3. Noise boost: Background odors may affect the dynamics of neuronal responses to the target

odor without a consistent effect on mean response. In that case the addition of background

odorants could manifest as an increase in the noise associated with the decision process, c2.

The behavioral predictions of the three hypotheses are depicted in Fig 2A–2C. These are

given by Eq 2 with a linear function on the relevant model parameters (see Fig 2 legend), while

the robustness of these results to the model parameters and any monotonous function is given

by Eq 3 and 4 (see Methods). The “false signal” hypothesis predicts that an increase in the
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number of background odors will result in an increase in target detection probability, but will

also manifest in an increase in the number of false detections (Fig 2A). In other words, the

probability that the subject would report that the target is present p would increase with the

number of background odorants, both when the target is present (blue) and when it is absent

(red). In contrast, the “signal reduction” hypothesis makes the opposite prediction—the proba-

bilities of both true and false detections will decrease with the number of background odors

(Fig 2B). Finally, the “noise boost” hypothesis predicts that with the increase in the number of

background odorants, choice behavior would contract to a stimulus-independent probability

((m+1)/2) resulting in both decrease in the probability of target detection and an increase in

Fig 1. Behavioral paradigm. A. Mice were trained on a target detection with background task that was set as a two-

alternative choice reaction time task. In each trial, mice were presented with an odorant mixture and were required to

report the presence or absence of a target odorant by licking the right or left lick ports, respectively. Correct licks were

rewarded with a water drop and incorrect licks were punished with a timeout. B. The temporal structure of the task. In

each trial an odor mixture was presented for 2 seconds. Mice were required to report their decision by licking within a

2.8 seconds response window that begins with odor presentation. Correct licks were rewarded immediately. The inter-

trial interval was 7.2 seconds following correct responses and 12.2 seconds following incorrect responses to encourage

accuracy over speed. The time between odor onset and the first lick was taken as the trial’s reaction time.

https://doi.org/10.1371/journal.pcbi.1009674.g001
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the probability of false detection (Fig 2C). Importantly, these predictions are generic to this

model and do not depend on a specific choice of parameters (as long as A0
�
< 0 < A0

þ
) or on

the identity of the corresponding monotonic function on the backgrounds. The experimental

relationship between the number of background odorants and p for both trial types is depicted

in Fig 2D (thin lines, single subjects, thick lines, average over subjects). P decreased with the

number of background odorants in target-on trials, and increased with the number of back-

ground odorants in target-off trials. This dependence is only consistent with the prediction of

the “noise boost” hypothesis and is inconsistent with the “false signal” and “signal reduction”

hypotheses.

The “noise boost” hypothesis predicts that the average decision time (Eqs 5 and 6, Methods)

would decrease with the number of background distractors both in target-on and in target-off

trials (Fig 3A, for the robustness of these results see Eq 6, Methods). To gain insight to this pre-

diction, consider the limit in which the variance of the noise in the decision process is very

large. Because the decision variable integrates this noise, the magnitude of the decision variable

will very quickly become very large, and will cross one of the decision thresholds. This predic-

tion is counter-intuitive because it suggests that decisions in the more difficult trials–trials

associated with more background odorants and hence more errors–- will be made faster. To

test this prediction, we measured the speed at which behavioral responses were made (reaction

time). Although reaction times include other components beyond decision times, they are use-

ful correlates of decision times. In agreement with the “noise boost” hypothesis, we found that

reaction times decreased with the number of background odorants (Fig 3B). This finding is in

contrast to a previous study that found a very small effect of background odorants on reaction

times, yet that study used a go no go paradigm and was based on a much smaller dataset [10].

Taken together, our results suggest that the effects of background odorants on target detection

may be explained by a mechanism in which adding backgrounds manifests as added noise in

the decision making dynamics.

Background odorants may reduce target detection by a combined effect on both signal, and

noise. To assess the contributions of background effects on signal and noise, we next fitted the

Fig 2. The effect of background odorants on decision probabilities. A-C. The probability of reporting that the target odorant is present (p) (see Eq 2, Methods) as a

function of the number of background odorants, for the three interference hypotheses: false signal (A), signal reduction (B), and noise boost (C). Blue–“target on” trials,

red–“target off” trials. Baseline parameter values are θ = 1; m = 0; A0
þ
¼ 2; A0

�
¼ � 2:5; c2

0
¼ 3. The drift rate under the false signal, the signal reduction and the noise

boost mechanisms are: Ai ¼ A0
i þ k � BG; Ai ¼ A0

i � k � BG and Ai ¼ A0
i , respectively, where i2{+,−} and #BG is the number of background odorants in the mixture and

k = 1. The diffusion is c2 ¼ c2
0
þ k � BG under the noise boost mechanism and c2 ¼ c2

0
in the false signal and signal reduction mechanisms. D. The fraction of trials that

mice reported that the target is present as a function of the number of background odorants. Thin lines show data from individual mice. Thick lines show the mean across

mice. Colors as in A-C.

https://doi.org/10.1371/journal.pcbi.1009674.g002
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DDM to the behavioral data using the chi-square optimization procedure ([39]; also see: Meth-

ods). We fit the data of each mouse individually, effectively allowing for both the drift rate and

the diffusion to vary freely between the 18 conditions defined by the target identity (target A

on, target B on, target off) and the number of background odorants (0–5 and 1–6 for target on

and target off trials, respectively; see Methods). One starting point and one Ter parameter,

which accounts for the component of the reaction time that is independent of the decision pro-

cess [39–41], were fit per mouse. Moreover, because the threshold (or, alternatively, the diffu-

sion coefficient, e.g., see: [29]) is a scaling parameter of both the drift and the square root of

the diffusion coefficient, the threshold of all mice in all conditions was fixed at the same value

(see Methods). Together, 38 parameters were fitted per mouse.

As discussed in the Methods section, the chi-square optimization procedure separately con-

siders 6 RT quantiles in the correct and incorrect trials, resulting in 12 summary statistics per

condition per mouse. Thus, the 38-parameter model was fitted using the 12x18 = 216 summary

statistics. These summary statistics were based on thousands of trials per animal (average

16,796, range: 12,302–22,954, see also: S1 Fig). On average, there were 933 trials per condition

per mouse (16,796/18, range 116–3,439). This variability resulted both from the variability in

the number of trials per mouse and from the fact that the number of trials decreased with the

number of background odorants (S1 Fig).

The fitted parameters captured well the relationships between choice probabilities and the

number of background odors, as well as the relationships between reaction times and the num-

ber of background odors (S2 Fig). Investigating these models revealed that background odors

had a consistent effect on both the drift and the diffusion of the decision variable (Fig 4). The

absolute value of the drift, consistently decreased with the number of background odors (Fig

4A). Conversely, the magnitude of the diffusion consistently increased with the number of

Fig 3. The effect of background odorants on decision times. A. Mean decision time (see Eq 5, Methods) under the “noise-boost”

mechanism as a function of the number of background odorants. Blue–“target on” trials, red–“target off” trials. Parameter values

are as in Fig 2: θ = 1; m = 0; A0
þ
¼ 2; A0

�
¼ � 2:5, where i2{+,−} and c2 ¼ c2

0
þ k � BG, where #BG is the number of background

odorants in the mixture and k = 1. B. The mean mouse reaction time as a function of the number of background odorants. Thin

lines show data from individual mice, and thick lines show the mean across mice. Colors as in A.

https://doi.org/10.1371/journal.pcbi.1009674.g003
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background odors (Fig 4B). These effects were also evident at the level of individual mice (S3

Fig). Both of these effects contribute to the decrease in performance as background odors are

added, however only the added noise can explain the decrease in reaction times, as reduced

signals increase rather than decrease reaction times. In summary the fitted models indicate

that background odors produce a compound effect on the decision making process by both

reducing signal and increasing noise. The increased noise is responsible for the paradoxical

relationship between trial difficulty and reaction time.

Discussion

We used the DDM in order to understand how background odors affect the detectability of

target odors. We first analyzed the prediction of three simple alternative mechanisms by which

background odors may act: inducing target-like signal (‘false signal’), reducing the target signal

(‘signal reduction’) or increasing noise (‘noise boost’). The finding that mice make faster and

less accurate decisions on trials with more background is only consistent with the increased

noise hypothesis. Fitting the DDM to the behavioral data suggests that background odorants

act by a combined effect on both signal and noise, but that the paradoxical relationship

between trial difficulty and reaction time is caused by the effect on noise.

While our results are general and do not depend on the assumption of specific model

parameters and the corresponding (monotonous) function on the backgrounds (see Methods),

two limitations of our analysis are worthwhile noting. First, our analysis implicitly assumed

that all background odors have the same effect, ignoring their identity, as well as the identity of

the target odors. Chemical and representational overlap between the target and background

odorants were shown to determine background potency [10]. The magnitude of the back-

ground odorant effect may therefore be odorant dependent. A larger behavioral dataset may

allow further separation of trials based on specific target-background combinations. Second,

our analysis is fully based on a specific theoretical framework–the DDM.

Importantly, our study is, to our knowledge, the first to find an inverse relationship between

trial difficulty and reaction time in an odor-guided task. Previous studies used odor discrimi-

nation tasks to analyze the relationship between speed and accuracy [42–46]. In such tasks the

Fig 4. Average drift (A) and diffusion (B) as a function of the number of background odorants. The plots depict the mean ± SE across

mice. Target-on trials are shown in blue and target-off trials in red.

https://doi.org/10.1371/journal.pcbi.1009674.g004
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difficulty is presumed to be related to the signal (odor similarity), and yet contrasting results

regarding the effect of discrimination difficulty on reaction times were reported. It is not

entirely clear what gave rise to the different results, yet it is possible that the difficulty in some

of the tasks that were used was in accurately representing the discrimination boundaries rather

than the sensory stimulus itself [46]. Additionally, a recent study indicated that the learning

process may also contribute to the relationship between task difficulty, success rate and reac-

tion times [43].

What do our results teach us about cross-odorant interactions? The overlapping nature of

sensory representations in the olfactory epithelium provides opportunity for many non-linear

odorant interactions [47–51]. Interaction between odorants have been studied mostly at the

level of sensory neurons [3,12–19,21] but also, a bit more anecdotally, in the olfactory bulb and

cortex [3,52–60]. These studies analyzed the amplitudes of responses to mixtures of odorants

and found that these are typically sublinear. The diffusion term in the DDM represents noise

that evolves with time within a trial. The finding that background odorants act as noise in the

decision making process may therefore suggest that adding background odorants changes not

only the amplitude of odor responses but also response dynamics. It will be interesting to ana-

lyze the dependence of response dynamics on background in olfactory brain regions.

Background segmentation is a task that is faced by all sensory systems. Is our finding that

reaction times decrease with increased background specific to the olfactory system? Although

background segmentation has been rather extensively studied in both vision and audition,

there are, as far as we know, no studies that immediately compare to ours. When detecting

Gabor patterns in noise, the number of eye fixations required for detection increases with vari-

ous parameters of the stimulus, yet the effects of varying the noise on reaction times have not

been examined [3]. Reaction times in tone in noise detection in the auditory system increase

when the signal to noise ratio is decreased (either by reducing the signal or enhancing the

noise), but the noise in these tasks was continuously present throughout the session and did

not obey the trial structure [61,62]. Future experiments that vary the background with a trial

structure may promote comparison of the effects of background on reaction times in the dif-

ferent sensory systems.

Methods

Ethics statement

All experimental procedures were performed in accordance with the Hebrew University Ethics

Committee for Care and Use of Laboratory Animals (approved protocol MD-17-15017-4) and

national guidelines.

Behavior

Subjects and surgery. 6 c57bl6 adult male mice (10–14 weeks old, Envigo) were trained

on the behavioral task. Mice were first anesthetized (Ketamine/Xylazine 100 and 10 mg/kg,

respectively) and a metal plate was attached to their skull with dental acrylic for subsequent

head restraining. Mice were then housed in pairs and maintained in a reversed light/dark cycle

facility. All behavioral training and testing was done during the subjective night time.

Apparatus. The behavioral apparatus was located inside a sound attenuating box (Med

Associates, VT USA) and consisted of a head restraining device, an odor delivery system, a

dual lick detector and a water delivery system. Odor delivery, monitoring of licking and water

rewards were controlled using computer interface hardware (National Instruments) and cus-

tom software written in LabVIEW. The mouse was continuously monitored using a CCD cam-

era during behavior sessions under red illumination.
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Odor presentation. Odorant mixtures were presented using a custom-made odor

machine as described previously [10]. The odor machine was designed to supply constant flow

(1.5 liters/minute) and have the concentrations of the different odorants independent of each

other. The odor machine was composed of 8 odor modules. Each module was made of two

glass tubes, one containing the odor and solvent and the other containing only the solvent. A

3-way valve (Lee Company, USA) diverted an input flow of filtered air to either the odor tube

or the solvent tube, and the output of both tubes was merged to form the module output. This

design ensured that each module contributed a constant amount of flow at any time. Input

flow to the modules and output flow from the modules were made of ultra-chemical-resistant

Tygon/PVC tubing connected in symmetric pair-wise bifurcations to ensure equal flow on all

modules. All odorants were diluted to 10% v/v in diethyl phthalate (Sigma Aldrich, CAS 84-

66-2) in the tubes and then further diluted in gas phase by the flow of other modules 8 fold.

The odorant mixture was carried from the point of final odorant convergence to the odor port

through a 1-meter-long tubing with an inner diameter of 1/16 inch to allow mixing while min-

imizing the latency from valve opening to odor presentation at the mouse’s nostrils. The time

delay between valve opening and odor delivery (200 ms), was measured using a photoioniza-

tion detector (miniPID, Aurora Scietific), and was subtracted from all reaction time values.

Odorants were replenished in the vials about once a month to maintain their concentrations.

Odor set. All odorants were obtained from Sigma Aldrich. The odorants were (CAS num-

ber in parenthesis): Ethyl propionate (105-37-3), Isoamyl tiglate (41519-18-0), Ethyl tiglate

(5837-78-5), 2-Ethylhexanal (123-05-7), Propyl acetate (109-60-4), Isobutyl propionate (540-

42-1), Ethyl valerate (539-82-2), Phenethyl tiglate (55719-85-2). The target odorant pairs and

the mice trained to detect each pair are as follows: Ethyl propionate and Isoamyl tiglate–mice

1&2. Ethyl tiglate and 2-Ethylhexanal–mice 3&4. Propyl acetate and Isobutyl propionate–mice

5&6.

Behavioral training and testing. Following surgery mice were allowed one week of recov-

ery and were then water restricted. Mice were then acclimatized to the behavioral apparatus

for at least 2 days in which they were allowed 30 minutes of free exploration and free water at

the apparatus. This was followed by 2 days in which mice were head-restrained and were

rewarded with a water drop for licking the water spouts. To train mice to lick both spouts,

drops were delivered randomly at the two spouts. On the fifth day of water restriction mice

began training on the task. Mice performed a single daily session of about 1 hour. A mixture

was presented for 2 seconds every 10 seconds and mice had to lick to the right if the mixture

included one of the two target odorants (target on) and to the left if it did not (target off). Mice

had to respond within a 2.8 second period (starting 200 ms after odor onset). Correct licks

were rewarded with an 8μL water drop, and incorrect licks were punished by a 5 second time-

out. Rejections were not punished and not rewarded. Training began with easy sessions and as

mice reached 70% performance over a whole session, session difficulty was adjusted. The diffi-

culty of the task was controlled by varying the distribution of the number of components in

the mixture using the following equation:

p xð Þ ¼
bx

P6

x¼1
bx

ð1Þ

where p(x) is the probability of x components (ranging from 1 to 6). The parameter b was first

set to 0.1 and was then raised sequentially through 0.25, 0.5, 0.75 reaching a maximal value of

1. Data was collected only in session with b> = 0.5. Mice performed one session per day with

an average of 250 ± 20 trials per session (lasting typically about an hour), and each mouse con-

tributed between 60 and 91 sessions to the data set (72 ± 12 mean ± SD, n = 6 mice). The
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number of trials each mouse performed under each condition is shown in S1 Fig. Mice often

had a bias towards one side (initially often licking to only one side). To eliminate this bias as

much as possible, stimulus statistics (target on and target off trials) were made dependent on

recent choices. The chance of the next trial being target-on was one minus the proportion of

licks to the right in the last 5 trials. Thus if a mouse preferred licking to the left, it would get

more trials in which the correct response is to lick to the right. This produced sessions in

which the fraction of target on trials was on average 55%. Chance level performance (the per-

formance if mice just guess and ignore the stimulus) is not easily defined here because the bias

is not known, however it is always less than 50%.

Data analysis. Other than the model fitting (see below), all analysis was performed using

custom written code in Matlab. Sessions with complexity below 0.5 were considered training

sessions and were not analyzed (except for learning curves). Occasional testing sessions in

which performance dropped below 70% (total correct trials/total trials) were also not analyzed

(45 such sessions were excluded from a total of 369). All reported parameters were calculated

for each mouse separately. To remove between-sessions variation in reaction times that stem

from variable positioning of the water spouts, the reaction times in each session were normal-

ized to the mean reaction time in the session. All reaction times were then multiplied by the

mean reaction time across all sessions to provide meaningful units. The normalized reaction

times and corresponding choices in each trial were used for the analyses below.

Modeling

According to the DDM, the decision is made once a decision variable x, which reflects the dif-

ference between the accumulated evidence in favor of choosing each of the two alternatives,

reaches one of two thresholds for the first time, ±θ, where θ>0. Formally, the dynamics within

a trial is given by dx/dt = A+ξ, where A is the drift rate, t is time and ξ denotes white noise such

that E[ξ(t)] = 0 and E[ξ(t)ξ(t0)] = c2δ(t−t0). The initial state of the decision variable is given by x
(t = 0) = mθ (m2(−1,1)). In this model, the probability that the decision variable will reach +θ
first, p, as a function of the model parameters is given by [22,63]:

p ¼
expðrÞ � expð� rmÞ

2 � sinhðrÞ
ð2Þ

where r = 2Aθ/c26¼0. We denote by +θ and −θ the decision thresholds associated with “target

present” and “target absent” decisions and by A+ and A− the drift rates associated with trials in

which the target odor is present (“target on” trials) and absent (“target off” trials), respectively,

and assume that in the absence of background odors, Aþ ¼ A0
þ
> 0; A� ¼ A0

�
< 0 and

c2 ¼ c2
0
.

To study the effect of changing the drift rates or the variance of the noise on p, we compute

the partial derivative of p with respect to these variables:

@p
@A
¼

y � gðrÞ
c2 � sinh2

ðrÞ
ð3Þ

@p
@c2
¼ �

A � y � gðrÞ
ðc2Þ

2
� sinh2

ðrÞ
ð4Þ

where: g(r) = exp(−rm)�[cosh(r)+m�sinh(r)]−1.

We note that g(r), in the domain D = {(r, m)|(−1<m<1)^r,m2R}, is bounded from below

by inf{g(r)|(r,m)�D} = 0. This is because the first derivative of g(r) in D, @g/@r = e−rm�(1−m2)�

sinh(r) = 0 only for r = 0, the value of the second derivative of g(r) in D at
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r ¼ 0; @2g=@r2jr¼0
¼ e� rm � ð1 � m2Þ � ½� m � sinhðrÞ þ coshðrÞ�jr¼0

¼ ð1 � m2Þ > 0, and

hence, gD(r) has an absolute minimum at r = 0. Thus, gD(r)�g(0) = 0. Because @g/@r is strictly

positive for D\{r6¼0}, gD\{r6¼0}(r)>g(0) and thus g(r) is strictly positive for r6¼0 and −1<m<1.

Therefore,
@p
@A > 0 and

@p
@c2 ¼

< 0 A > 0

> 0 A < 0

(

.

According to the “false signal” hypothesis, both A+ and A− are monotonously increasing

functions of the number of background odor. Thus, the addition of background odors

increases p, and hence increases the probability of a correct response when the target odor is

present and decreases it when the target is absent (note that the probability of a correct

response is p in “target on” trials and 1−p in “target off” trials). Similarly, the “signal reduction”

hypothesis posits that A+ and A− decrease monotonously with the addition of background

odors, with the opposite effects on p. Finally, in the “noise boost” hypothesis, background

odors increase c2 monotonously without changing A+ and A−, which results in a decrease in

the probability of a correct response both when the target odor is present and when it is

absent.

Next, we consider the effect of odor backgrounds on the speed at which decisions are being

made in the “noise boost” mechanism. In the DDM, the mean decision-time, E[DT], as a func-

tion of the model parameters is given by [22,63]:

E DT½ � ¼
y � ½coshðrÞ � m � sinhðrÞ � expð� r �mÞ�

A � sinhðrÞ
ð5Þ

The derivative of E[DT] with respect to c2 is given by

@E½DT�
@c2

¼ �
2y

2
� gðrÞ

ðc2Þ
2
� sinh2

ðrÞ
< 0 ð6Þ

Thus, if c2 is a monotonously increasing function of the number of background odors, add-

ing background odors is predicted to decrease E[DT].

Quantile estimation of the DDM parameters

The behavioral dataset in this experiment consists of hundreds of trials per mouse per condi-

tion (see S1 Fig). Under these circumstances [64,65], we fit the DDM to the response data of

each mouse using the Chi-square quantile optimization procedure [39] available through

HDDM Python toolbox [66]. We did not use a Bayesian hierarchical procedure, both because

of the data abundance but also, because the identity of target odors changed between every 2

pairs of mice, making the fitting of group parameters less informative. Under the Chi-square

fitting procedure, the empirical correct and error response data in each condition are sepa-

rately divided into 6 RT bins, according to 5 quantiles (0.1, 0.3, 0.5, 0.7 and 0.9), and the

expected cumulative probability up to each quantile is computed using the theoretical defective

cumulative probability. Subtracting the expected cumulative probabilities of each pair of suc-

cessive quantiles and multiplying the result by the total number of either correct or error trials

in that condition results in the expected frequencies corresponding to each of the 12 bins. The

objective of this fitting procedure is to minimize the sum of (O−E)2/E between observed and

expected frequencies, summed over the 12 bins and over conditions. In addition, the fit proce-

dure assumes some portion of uniformly distributed outlier data, which do not follow the

DDM dynamics (e.g., due to attentional lapses). As commonly applied by current DDM fitting

procedures, we allowed for 5% of responses to be discarded (for more details, see: [39,66].
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To assess the contributions of background effects on both signal and noise, we fit the

response data of each mouse to the DDM using the above Chi-square procedure. We note that

in fitting data to the DDM, the diffusion parameter is commonly viewed as a scaling parameter

of the drift and threshold parameters and it is therefore typically fixed at some constant value

(frequently 0.1 or 1, [29,67,68]. Equivalently, however, each of these 3 model parameters may

be viewed as a scaling parameter of the other two and thus fixed at some constant value in

order to measure how the remaining parameters change between conditions. Because we were

interested in the effect of backgrounds on both the signal and noise and as we used a custom

code, in which the diffusion variance is set to 1 [66], the fitted parameters were scaled to quan-

tify the backgrounds effect on the drift (A) and diffusion variance (c2). The remaining parame-

ters (m0 and Terr, see below) are not affected by this scaling and thus do not require a similar

adjustment. We also note that unlike the DDM presented above, the fitting procedure we used

assumes that the upper and lower thresholds and the starting point are located at θ0, 0 and

0<m0θ0<θ0, respectively (instead of ±θ and −θ<mθ<θ, as in our DDM modeling framework),

though it can be shown that setting θ = θ0/2 and mθ+θ = m0θ0 depicts the same process. Thus,

the fitted parameters were scaled according to: A ¼ Afit
yfit
; c2 ¼ 1

ðyfitÞ
2 ; θ0 = 1 (θ = 1/2) and

m = 2m0−1.

For each mouse and each of the 18 conditions– 3 possible targets modes X 6 possible num-

bers of background odorant (target A on: 0–5 backgrounds; target B on: 0–5 backgrounds; no

target: 1–6 backgrounds)–we allowed the threshold (θ0) and drift parameters (A0) to vary

between conditions, effectively allowing the drift rate (A) and diffusion variance (c2) parame-

ters to vary between conditions. To fit the model to the data, Ter is added to account for the

component of the reaction time that is independent of the decision process [39–41]. In our fit-

ting, one non-decision time, Terr, and one starting point, m0, were fit per mouse and were not

allowed to change between conditions. This resulted in an overall of 38 parameters that were

fitted per mouse. Figs 4 and S3 depict the adjusted drift rate (A) and diffusion variance (c2)

parameters. To evaluate the quality of the DDM fit, we simulated 1000 responses based on the

fitted parameters obtained for each mouse and each condition and compared these with the

empirical data. The DDM provided reasonable fits to the by-mouse by-condition p and

median reaction times (see S2 Fig). We note that comparable results were obtained using a

Maximum-likelihood fitting procedure (not shown, but see: data and code availability).

Supporting information

S1 Fig. The number of target-on (blue) and target-off (red) trials performed by each mouse

for each number of background odorants.

(TIF)

S2 Fig. Comparison of experimental and DDM predicted decisions (A), and decision times

(B). Behavioral data (colored) and Model predictions (black) are shown for each mouse (col-

umn). Data and model predictions are shown separately for target A trials (blue), target B trials

(purple), and no target trials (red). Reaction times are shown as median ± median absolute

deviation.

(TIF)

S3 Fig. Drift (A) and Diffusion (B) extracted from the DDMs fit to individual mice. The mean

values for each mouse and number of background odors are shown. trials are separated by tar-

get odor content: target A (blue), target B (purple), and no target (red).

(TIF)
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