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From choice architecture to choice
engineering

Ohad Dan® "2 & Yonatan Loewenstein® 1234

Qualitative psychological principles are commonly utilized to influence the
choices that people make. Can this goal be achieved more efficiently by using
quantitative models of choice? Here, we launch an academic competition to
compare the effectiveness of these two approaches.

Influencing human choices has been a principal objective of parents and educators, as well as of
salesmen and politicians for millennia. In economics, psychology and neuroscience, there is
considerable interest in the principles underlying decision-making and in the ways in which they
can be used to bias human choice. The 2017 Nobel prize in economics, was awarded to Richard
Thaler for his contributions to the development of behavioral economics and its applications to
policy-making. Thaler coined the term choice architecture to describe how insights from
behavioral economics can be used to nudge choices without changing their objective values!.
Choice architecture utilizes qualitative psychological principles to shape behavior. Can this goal
be more effectively achieved using quantitative models? In the natural sciences, quantitative
models underlay the development of engineering. Therefore, we ask whether quantitative models
can revolutionize the field of choice architecture into choice engineering, defined as the use of
quantitative models to shape choice behavior.

Both qualitative principles and quantitative models identify factors that affect behavior.
The difference between them is that the latter, but not the former, quantitatively describe
the magnitudes of the effects. Operant learning is a process, in which the strength or likelihood
of a behavior is modified by rewards and punishments. We demonstrate the difference
between choice architecture and choice engineering in the framework of an operant
learning task.

Consider an objective function of maximally biasing choices in favor of a predefined alter-
native (defined here as alternative 1) in a repeated, two-alternative forced-choice task with
binary rewards (Fig. 1a). How should a choice architect and a choice engineer allocate the
rewards in view of this goal? Thorndike’s Law of Effect is a qualitative description of operant
learning: “Of several responses made to the same situation, those which are accompanied or
closely followed by satisfaction to the animal ... will be more likely to recur”2. In line with this
law of behavior, a choice architect (and common-sense intuition) would recommend allocating
all available rewards to the desired alternative 1 (Fig. 1b). Subtler principles of choice become
necessary if we add constraints, e.g., that the number of rewards that can be allocated to
alternative 1 is limited. For a real-life example, assume that you organize a seminar course,
and invite each week a different guest lecturer. Having taught the course in the past you know
in advance, which lectures will be more interesting. How should you distribute those
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Fig. 1 Choice engineering in a repeated two-alternative forced-choice task. a
Experimental task—A reward schedule allocates binary rewards to each of the
alternatives in each of the trials. The subject repeatedly chooses between the
two alternatives. If the subject chooses a rewarded alternative, then she
receives a monetary reward in that trial. In this example, the first choice is “1"
and it yields a reward ($ sign) while the second choice, “2", does not yield any
reward. No feedback is given about the foregone payoff (the reward that was
associated with the alternative that was not chosen). b Based on the Law of
Effect, bias in favor of alternative 1is expected to be maximal if all choices of
alternative 1 are associated with a reward (red circles) while choosing
alternative 2 is never rewarded (black X). ¢ Choice architecture. If the number
of rewards associated with the two alternatives is constrained, a choice-
architect may choose to use the primacy heuristic and place all rewards
associated with alternative 1 at the beginning of the sequence and those of
alternative 2 at its end. d, e A choice engineer can utilize a quantitative model
of choice to optimize the reward schedule. d Static schedule optimized for a
QL agent. e Static schedule optimized for a CATIE agent

more interesting lecturers between the different weeks, if your
goal is to maximize students’ attendance throughout the year?
For simplicity, we consider a symmetric problem in which
an identical predefined number of rewards must be assigned to
each alternative. The Law of Effect is not specific enough to
prescribe the optimal allocation of rewards in this case. However,
a choice architect may utilize additional qualitative psychological
principle to allocate the rewards. For example, motivated by the
primacy effect® the architect may recommend to place all
rewards that are associated with alternative 1 at the beginning
of the sequence and those of alternative 2 at its end (Fig. 1c).
Quantitative models are widely used to study the computa-
tional principles and neural basis underlying operant learning®>.

For example, the popular Q-learning (QL) model® provides a
quantitative description of learning in the repeated, two-
alternative forced-choice task. According to this model, humans
compute the expected reward associated with each of the alter-
natives based on their past experience, and choose more often
the alternative associated with the higher estimated expected
reward. The QL model provides a quantitative prediction of
future choices—the probability that the participant would
choose each of the alternatives in each trial, based on her
specific history of actions and their outcomes (see Supplementary
Methods). A choice engineer that is equipped with such an
accurate quantitative description of the learning process
can design a more sophisticated reward schedule for this task
(Fig. 1d, e).

The choice engineering competition

Are current models of choice accurate enough to engineer
behavior? To address this question, we follow the grand tradition
of competitions in neuroscience, cognitive sciences and game-
theory’?. In recent years, academic competitions proved to be a
major catalyst in the field of computer science. Most notably, the
ImageNet!? challenge, served as a prominent driver of both
theoretical and practical advancements in the field of computer
vision and Deep Learning.

Here we announce the Choice Engineering Competition.
The challenge presented to the researchers participating in our
competition is to propose a reward schedule that maximally
biases the choices of human subjects in a repeated, two-alter-
native, forced-choice experiment, which we denote as a session.
A session consists of 100 trials. In each trial, a reward may be
assigned to one, two or none of the alternatives, complying with
the global constraint of assigning a reward to exactly one-quarter
of the trials (25 trials) of each alternative (as in Fig. 1c—e).

Static reward schedule

One way of complying with these constraints is to prepare, in
advance, the allocation of rewards to trials (as in Fig. 1c—e). We
refer to such schedules as static. There are approximately 6 x 10%

100
25

constraints. A choice engineer that is equipped with an
accurate quantitative model of the decision maker can search
the optimal reward schedule, the one that maximally biases
choices, by optimizing over the different possible schedules in view
of her model (see Supplementary Methods). This is, however, not
possible for the architect that must rely on qualitative principles to
design the reward schedule (as in Fig. 1c). To demonstrate the
potency of choice engineering, we assume a decision-maker whose
choices follow the QL model®. We found in numerical simulations
that the bias induced by an engineered schedule (Fig. 1d) is 64%
(chance is 50%), substantially larger than the bias induced by the
naive choice architect’s schedule (Fig. 1c), 55% (Fig. 2). Note,
however, that effective engineering of behavior requires an accu-
rate model of choice. If the choice engineer is not well-informed
and the reward schedule is optimized assuming a different model
(Fig. le; the CATIE model, see Supplementary Methods), the
resultant bias, 53%, can be even smaller than that obtained by the
naive architect (Fig. 2).

2
different static reward schedules << ) consistent with our

Dynamic reward schedule

The design problem depicted in Fig. lc-e is static: the full
reward schedule is determined in advance and is used for
all subjects. This schedule does not take into account hetero-
geneity between subjects (the fact that different subjects may be
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Fig. 2 The effect of reward schedule on the bias of a QL agent. Red, orange
and blue bars denote the naive schedule, and schedules optimized
assuming a QL agent and a CATIE agent, respectively. Light colors denote
static schedules whereas dark colors denote a dynamic reward schedule
(see Supplementary Methods). Dashed line denotes chance level and error-
bars are standard errors of the mean

characterized by different parameters), as well as the actual
sequence of choices (the specific realization of stochastic
behavior). A more sophisticated choice engineer can utilize in
each trial the subject’s past choices and rewards to dynamically
allocate the rewards of the next trial. To test this approach, we
trained a deep neural network to maximally bias choice by
dynamically allocating the rewards of the next trial, based
on past actions and rewards, while complying with the
reward schedule constraints (see Supplementary Methods). By
definition, a static reward schedule is nested within the dynamic
schedule, so if the model of the agent is accurate, the
dynamic schedule cannot be worse than the static one. Indeed,
we found in our numerical simulations that a QL-optimized
dynamic schedule does better than the QL-optimized static one,
yielding a bias of 70% for the QL agent. As with the static
schedule, a dynamic schedule is effective only if its underlying
model of choice is accurate. If optimized for a different model
(CATIE) it poorly biases the choices of the QL agent (a bias of
52%, Fig. 2).

Model comparison

Traditional methods for model evaluation are associated with an
estimate of the model’s explained variance. While this approach
has proven useful in many studies, it suffers from several short-
comings. First, it is not clear how the complexity of a model—a
necessary ingredient in model comparison—should be quantified
and utilized!!. Second, the scope of conditions in which the
models are put to test is typically rather limited. Thus, testing the
ability of different models to shape behavior (as in Fig. 2) is a
novel way of comparing models (see related concept!2), which is
far less restrictive then explained variance in a particular
experimental setting. It can be used to compare models of arbi-
trary complexity—the models are simply compared by their
effectiveness in shaping behavior. Moreover, and perhaps more
importantly, the competition can compare the potency of quan-
titative models of choice (choice engineering) to that of qualita-
tive principles (choice architecture) in choice design.

The competition

The principles underlying operant learning are formally studied
in different disciplines, including neuroscience, psychology, eco-
nomics and computer science. However, one does not need to be

formally trained in any of these fields in order to be a good choice
designer and participate in the competition. We are all social
creatures and have good intuitions as to how to incentivize other
humans to make specific choices.

We offer two participation tracks. In the first static track,
choice designers are invited to propose static reward schedules
in the form of a sequence of rewards (as in Fig. 1). In the sec-
ond dynamic track, choice designers are challenged to submit
a computer program that allocates, in every trial, the reward/s
of the next trial, based on the history of choices and rewards.
The participants are requested to shortly explain whether their
design is based on a quantitative model of choice (making
them choice engineers) or qualitative principles and heuristics
(making them choice architects). To help choice engineers
fine-tune their models, we have already tested 400 subjects
using different static schedules that are consistent with the
constraints. These datasets are available in the competition
website.

Competition management

The full details of the competition appear in the competition
website http://decision-making-lab.com/competition/index.
html. In short, the static and dynamic schedules will be inde-
pendently compared in two separate competitions. The winning
schedules are the ones that averaged over the tested sessions,
maximize the bias in favor of alternative 1. If possible, each
tested subject (an Amazon mechanical Turk worker) will be
tested in a single session. To efficiently identify the best sche-
dules, we will use the method of successive rejects!3 (see Sup-
plementary Methods) that allocates more sessions (more
samples) to the so-far better performing schedules. Each par-
ticipant in the competition is allowed to submit a single
static and a single dynamic schedule. Each schedule must be
accompanied by a short explanation of the principles or
models which guided the design of the submitted application.
Should the number of submissions be too large, these expla-
nations will be used for an initial screening of those submitted
applications that will enter the competition. The winners of
the static and the dynamic schedules competitions will be
invited to present their schedules as a talk in a workshop
summarizing the competition. If appropriate, they will also be
invited to coauthor the paper summarizing the results of
the competition. In addition, all the datasets collected during
the competition will become publicly available after the com-
petition is concluded.

The deadline for submissions is set to four months from the
published date of this commentary.

In conclusion, we believe that the Choice Engineering Com-
petition is a first step in the field of Choice Engineering, providing
both a novel way of comparing the potency of different quanti-
tative models to qualitative principles (and to common-sense
intuition) and a way of using these quantitative models to shape
behavior. In this competition we focus on choices in a specific
domain of operant learning—repeated, two-alternative choices
with partial feedback. However, this framework can be readily
expanded to other operant tasks, e.g., tasks involving multiple-
choices, different constraints on the reward schedule, full-feed-
back, etc. Finally, it can be further generalized to help search for
effective learning strategies, from low-level perceptual learning to
higher-order skill acquisition.

Code availability
All the code used to generate the results presented in the paper is available upon request
from the authors.
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