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Consider a wildlife photographer that has just entered a

rainforest that she has never visited. Looking for a good spot for

animal photos, she can spend all her time in the first hideout

that she found, slowly learning which animals visit that spot.

Alternatively, she can consider other locations, which are

potentially better but might also be worse. To identify these

better locations she needs to leave her hideout and walk further

into the forest, thus missing the opportunity to learn more about

the qualities of her first hideout. How should she explore the

forest? How does she explore it? Here we describe the

computational principles and algorithms underlying exploration

in the field of Machine Learning and discuss their relevance to

human behavior.
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“ . . . As she gazed, she sniffed and sighed. ‘The

sea is deep and the world is wide! How I long to

sail!’ Said the tiny snail.”

— Julia Donaldson, The Snail and The Whale [1]

Introduction
Whether it is a wildlife photographer in a forest, looking

for a good spot for animal photos or a rat in a subway

station looking for food and shelter, exploring one’s

environment is an essential component of Reinforcement

Learning (RL). In Machine Learning (ML), exploration
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is typically studied in the framework of Markov Decision

Processes (MDPs) [2,3]. MDPs are characterized by

states and actions. Taking an action in a specific state

can result in a transition of the agent to a different state

and the delivery of a reward, with fixed probabilities. The

Markov property dictates that given its current state and

action, the transition to the next state and the delivery of

reward are independent of the agent’s history of states,

actions and rewards. Considering the photographer exam-

ple, she is rewarded for taking good pictures of animals,

whose probabilities depend on her current location

(state). At every time point, she must decide which action

to take, whether to take a photo, or to execute a different

action, for example, to walk or to climb a tree, which will

result in a change of her location. The goal of the agent in

an MDP is to maximize the expected cumulative rewards

(often with some discounting of future rewards). If the

MDP is fully known, there exist efficient algorithms that

can guide the agent to select, in each state, the optimal

action with respect to its goal [2]. However, when the

MDP is unknown, the agent must learn the optimal

mapping from states to actions (‘policy’) by interacting

with the environment. This learning requires exploration,

and how to explore well is an active topic of research in

ML.

Random exploration
To learn about the consequences of the different actions

in the different states, all of the actions in all of the states

must be taken. If the MDP is stochastic, they must be

taken many times (in fact, infinitely many times). This

can be achieved by choosing actions at random. However,

this approach will not only perform poorly with respect to

reward accumulation, learning this way will, in practice,

be highly inefficient. This is because such exploration

does not utilize the knowledge that has already been

gained about the environment. Specifically, a photogra-

pher that has already identified several potentially good

photo locations should give more attention to those spots,

rather than explore spots that have previously proven to

be lean. A standard solution to this problem is to utilize an

estimate of the cumulative rewards following each action

in each state, a quantity known as ‘action-value’, and to

select with a higher probability actions which are associ-

ated with a higher action-value. This results in explora-

tion that is still random, but is no longer uniform. Rather,

it is biased in favor of actions which are deemed better.

The most standard application of this approach in ML is

known as ‘e-greedy’ (Figure 1a): with high probability

(1 � e), the agent selects the alternative deemed best
www.sciencedirect.com
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Figure 1

(a) (b) (c)
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Random exploration strategies in the 2-armed bandit task.

(a) e-greedy: the alternative associated with the larger action-value (q) is chosen with probability (1�e) and that associated with the smaller action-

value is chosen with probability e, independently of its action-value (compare top and bottom). (b) Softmax: the probability of choice is

proportional to the (scaled) exponentiated action-value. As a result, the probability of choice depends on the specific action-values, and not only

their ranking (compare top and bottom). (c) Thompson sampling: rather than using point estimates of the action-values, the agent estimates the

action-values using probability distributions. In each trial, the agent samples an action-value from each distribution and greedily chooses the

action associated with the largest sampled action-value. As a result, the probability of choice depends not only on the mean of the distribution but

also on its higher moments. Specifically, in this example, an action associated with a smaller mean action-value may be chosen more often than

one with a larger action-value if the variance over its distribution is larger (compare action ’Left’ in Top and Bottom). Estimated actions-values q

((a) and (b)) and their distributions are presented in the rounded rectangles. Black bars’ length depict the probabilities of choice of the

corresponding actions. Top and Bottom panels portray different action-values.
with respect to rewards (greedy). With a low probability

(e), the agent explores by randomly selecting another

action. Exploration this way, however, does not distin-

guish between the non-greedy alternative actions. There-

fore, a more graded approach, in which alternative actions

that are deemed better are chosen with a higher proba-

bility is often used. Typically, this is achieved using a

‘softmax’ function (Figure 1b), which can be justified as

resulting from constraints on the entropy of the policy [4].

Finally, in Thompson sampling (Figure 1c) the posterior

distributions over action-values are estimated, and actions

are chosen by randomly sampling from these distributions

and greedily choosing with respect to these random

samples [5]. This allows for stochasticity, whose magni-

tude decreases with the certainty in the estimation of the

action-values.

Directed exploration
The goal of exploration is to gain new knowledge. There-

fore, exploration should ideally be directed towards

actions that are more useful in that respect [6,7]. Choosing

an action randomly, or according to its action-value is not

efficient in that perspective. Rather, an agent can more

efficiently explore if it tracks its own past behavior and

chooses actions according to their predicted exploratory
www.sciencedirect.com 
value. Methods that preferentially choose more uncertain

options are termed ‘directed exploration’. A simple way of

keeping track of how ‘well-explored’ a particular action is,

is to use visit counters (Figure 2a). For each action and

state, count how many times this action has been selected

(in the given state) and prioritize actions that were

previously selected less often [8–10]. In recent years,

the concept of visit counters has been extended in several

ways. Most notably, there are (a) techniques to apply

counter-based methods in large or continuous problems

(in which it is unfeasible, or not helpful, to actually ‘count’

visits of individual states) [11�,12,13,14�]; and (b) the

introduction of generalized counters (Figure 2b), used to

evaluate the long-term exploratory consequences of

actions, beyond the immediate, one-step-ahead informa-

tion represented by standard visit counters [14�,15].

Tracking its own learning process can also inform the

agent about gaps in its knowledge about the world. A

surprising outcome of an action in a particular state

(relative to what the agent has predicted based on its

past experience) is an indication of missing knowledge

that should drive exploratory choices in that direction. For

example, in many algorithms, the reward prediction error, a

measure of the surprise (with respect to reward)
Current Opinion in Behavioral Sciences 2020, 35:104–111
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Figure 2

(a) (c)

(b) (d)
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Directed exploration.

In directed exploration, actions associated with more uncertainty are chosen more often. Here we describe a few methods for directed

exploration. (a) Counters: choices are biased in favor of actions that were previously chosen less often. (b) Generalized counters: choices are also

biased in favor of actions that are likely to lead to other actions that were previously chosen less often. (c) Surprise: choices are also biased in

favor of actions that yielded surprising results. The magnitude of the reward prediction error is one way of measuring ’surprise’. In this example,

choice is biased in favor of the action associated with the larger magnitude reward prediction error, despite it being negative. (d) Optimism:

action-values’ estimates are initialized using a large number. As a result, a greedy choice would initially favor those actions that were previously

chosen less often. Estimated actions-values q, visit counters c and prediction errors Dqt are presented in the rounded rectangles. Black bars’

length depict the probabilities of choice of the corresponding actions.
associated with the outcome of an action, is used to

update the estimated value of the chosen action. This

prediction error can also serve as a signal for guiding

exploration (Figure 2c). This is because actions associated

with high prediction error (in absolute value) are ones for

which learning has probably not converged yet and thus

requires further exploration [16,17]. The same logic can

be applied to prediction errors arising in learning of

quantities other than the expected reward, such as the

prediction error for the next state given the current state

and action [18]. Surprisingly, it turns out that even pre-

diction errors arising from learning a fixed, random func-

tion, can be sufficient for successfully guiding effective

exploration [19]. Other methods to quantify and utilize

surprise use information-theoretic quantities such as

information gain to guide exploration [20–22]. Finally, a

popular method for exploration is known as optimism in the
face of uncertainty [23,24]. The idea is to optimistically
Current Opinion in Behavioral Sciences 2020, 35:104–111 
initialize the estimated action-values in the learning

process (Figure 2d). If exploration is directed in favor

of actions that seem more valuable then by construction,

those actions less visited will be favored.

These different methods for directed exploration can be

incorporated in the process of learning in various ways. An

exploration bonus that is based on one of the principles

outlined above can be added to the reward, such that

reward-seeking will result also in exploration [9,11�,19].
Alternatively, action-selection can directly incorporate a

term that favors exploration [8,14�]. Finally, these differ-

ent principles can be combined. For example, optimism

in the face of uncertainty can be combined with measures

of uncertainty or missing knowledge such as counters. An

agent can adopt an optimistic belief for actions which

have not been explored enough yet, and trust its unbiased

estimate for actions which have been explored
www.sciencedirect.com
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sufficiently many times. This approach underlies several

algorithms that are theoretically guaranteed to efficiently

explore [25,26].

Studying exploration in humans using the
bandit task
A most popular paradigm used to uncover the computa-

tional principles underlying exploration in humans is the

bandit task (see for example Refs. [27�,28,29]). A partici-

pant is instructed to repeatedly choose between k alter-

natives (often, k = 2), that are characterized by different

reward-distributions. To uncover exploration in this task,

it is assumed that the participant has estimated the action-

values associated with the different actions and that her

overall objective is to maximize cumulative rewards. An

action that is associated with the largest action-value is

interpreted as reflecting the exploitation of the already-

obtained information, while any deviation from such

greedy behavior is interpreted as reflecting exploration,

whose goal is to add information about the other action-

values. The mapping from action-values to choices has

been measured non-parametrically, revealing that

humans utilize an action-selection function that combines

e-greedy and softmax functions [30�]. Later studies have

revealed that the magnitude of exploration depends on its

usefulness. Specifically, in a ‘horizon task’, in which the

number of remaining trials is large, participants tend to

explore more compared to tasks in which a single trial

remains [31,32].

Several studies have shown that in addition to random

exploration, uncertainty also directs human exploration

[27�,29,33–35]. Developmental [36], genetic [37,38],

imaging [39], pharmacological [40] and transcranial mag-

netic stimulation [41] studies suggest that anatomically

distinct cognitive modules underlie random and directed

explorations. Indeed, directed, but not random explora-

tion is correlated with the extent to which participants

care about future rewards (their temporal discounting

function [32]). Similarly, frequent gamblers exhibit a

specific reduction in directed exploration, but not in

random exploration [42].

By construction, the bandit task cannot address a funda-

mental aspect of exploration — the long-term exploratory

consequences of actions. For example, the photographer

may choose to climb down a tree not because she is

interested in photos associated with the climb, but

because she is interested in moving to a different location

in the forest. Studying this kind of exploration requires

more complex experimental designs (see also below) [43].

Challenges in identifying human exploration in
the bandit task
To relate participants choices to exploration, researchers

typically estimate the action-values utilized by the parti-

cipants (Figure 3a). This procedure implicitly postulates
www.sciencedirect.com 
that participants indeed compute and utilize action-

values in their learning behavior. However, there is no

guarantee that this is indeed the case [44]. In fact, several

operant learning algorithms that are devoid of any explicit

or even implicit representation of action-values (e.g.

based on policy gradient) (Figure 3b) explain behavior

well in bandit-like tasks [45–47]. It is not even clear how

to define exploratory behavior in the absence of value

representation, as it can no longer be related to choosing

lower-valued options. One may be tempted to identify

stochastic choice with exploration. However, while the

existence of an optimal deterministic policy is guaranteed

in fully observable MDPs, this is not the case when

considering reactive policies in the more realistic partially

observable MDPs (POMDPs) [48,49]. On the other hand,

some exploration algorithms are fully deterministic [14�].

Moreover, in the framework of action-value estimation in

the bandit task, it is typically assumed that the partici-

pants estimate action-values as if they are in a one-state

MDP. However, it is well known that humans ’detect’

temporal structures even in random sequences [50,51].

This result suggests that participants are likely to utilize a

more sophisticated model than a one-state MDP when

tested in the bandit task (Figure 3c) [45,46]. Indeed,

given the same sequence of outcomes, participants’

behavior critically depends on whether they fully under-

stand the stochastic mechanism that maps actions to

rewards [52�]. The one-state MDP assumption is further

challenged by the fact that in some tasks participants’

behavior is consistent with the belief that they operate in

a non-observable MDP (a POMDP with just one obser-

vation) [49]. Indeed, in many bandit experiments, the

task is not a one-state MDP and the (unknown) reward

probabilities change throughout the task. A recent study

has demonstrated the difficulty in identifying exploratory

behavior in the framework of action-value learning.

Studying choices in a bandit task, it was shown that

the majority of non-greedy decisions is due to limited

computational precision rather than reflecting human

exploration [53�] (Figure 3d).

Finally, the challenge of identifying the model underly-

ing behavior is not unique to exploration. In general, the

internal models participants employ are underdeter-

mined by their behavior [54]. To deal with this issue,

models are compared and their parameters are estimated

using methods such as maximum-likelihood. However,

despite substantial progress, a comprehensive under-

standing of human behavior in the bandit task is still

lacking [55].

Ecological exploration
The k-armed bandit task is relatively easy to model and to

relate to the general-purpose ML algorithms described

above. However, it does not take into account an essential

aspect of human learning and exploration — prior
Current Opinion in Behavioral Sciences 2020, 35:104–111
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Figure 3
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Repertoire of possible mental models.

It is difficult to identify exploration because the participant may utilize (unknown) different models when learning in the two-armed bandit task. (a)

The participant (smiley) may assume that the world is a one-state (S0) MDP (Top), learn the two action-values (gold bars) and choose between the

two actions (arrows) using a softmax function (Bottom). This is the model researchers typically use to quantify behavior. (b) However, the

participant may utilize a very different learning model. For example, the participant may learn the policy directly, without estimating action-values.

In this case, it is not even clear how to define exploration. (c) The participant may assume an MDP that is more complex than the true one. She

may also use a different action-selection function. (d) Finally, noise in the action-values’ estimation may be erroneously interpreted as

‘exploration’. This could lead to an underestimation of the slope of the action-selection function. Each model is described in one column, where

the top panel depicts the learning and the bottom panel the action-selection. Gold bars, ship, reading person and scientist are adapted from Ref.

[75].
knowledge about the structure of the MDP. Let us

reconsider the photographer example. The photographer

enters the forest, which she has never visited with exten-

sive knowledge about it. For example, she knows that if

she moves left — she will find herself to the left of her

previous state. She knows that if she climbs up a tree, she

will need to climb it down in order to move to a different

location in the forest (unless she is Tarzan). These trivial

facts, which will dominate the photographer’s exploratory

behavior, are typically lacking from the standard ML

algorithms, which were constructed to learn general

MDPs. The dependence of human learning (but not of

machine learning) on such priors has been demonstrated

in an experiment that compared computer-game learning

of humans and machines. Humans learned the game

much faster than machines. However, their learning

ability substantially deteriorated when objects (ladders

for climbing, demons as game-ending enemies) were

masked by re-rendering their pixels. By contrast, the

ML algorithm was insensitive to this manipulation

[56]. Another study demonstrated that participants utilize

spatial cues when learning in a bandit task with a large

number of possible actions [57]. Even infants, the ulti-

mate candidates to be considered as tabula-rasa agents,

have expectations of their environment and insights on its

structure [58,59]. It has been argued that the artificial

environments that are utilized in lab experiments are too

different from ecological-relevant exploration. As a result,

the relevance of the resultant conclusions to natural
Current Opinion in Behavioral Sciences 2020, 35:104–111 
behavior is questionable [60]. This lacuna can be

addressed by utilizing more ecologically valid experimen-

tal paradigms [33,43].

Exploration has also been studied in the context of

foraging, which is perhaps ecologically more relevant than

the bandit task [61,62]. The foraging decision is whether

to exploit a current option or explore, looking for a better

one. The experimental design can be similar to that of the

bandit task, but the magnitude or probability of reward

diminishes with the number of times that the alternative

was chosen. Foraging is typically analyzed in the frame-

work of the Marginal Value Theorem [63], which

describes the strategy that maximizes the cumulative

rewards when returns decrease with time spent exploiting

an option. This is because a general MDP that does not

take into account prior knowledge about the diminishing

nature of returns does not seem relevant to human

behavior. This poses a challenge when attempting to

relate contemporary machine-learning exploration algo-

rithms to behavior in these foraging tasks [61].

Finally, people tend to overestimate the probability of

positive outcomes, and underestimate that of negative

outcomes, a phenomenon known as ‘optimism bias’ [64].

This could reflect a biased prior knowledge about the

world. To the best of our knowledge this bias has not been

directly linked to human exploration. It would be inter-

esting to test whether it contributes to human exploration
www.sciencedirect.com
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in a similar way that ’optimism in the face of uncertainty’

contributes to exploration in ML.

Exploration and curiosity
Broadly speaking, curiosity is often defined as the desire

for information [65–67]. In the framework of RL, curiosity

has been traditionally related to exploration, either by

using exploration as a measurement for curiosity

[35,68,69], or by considering a (model of) curiosity as a

form of an exploratory drive [7,18,20]. While curiosity in

general, as well as other ‘intrinsic’ drives, might be

broader than the notion of exploration in RL contexts

[70,71], some hypotheses about curiosity can be directly

formulated in the language of RL, and particularly explo-

ration strategies [72]. For example, one theory states that

novel objects create more curiosity [69] while another

theory states that people are more curious about informa-

tion gaps - specific cases of high uncertainty [73,74]. The

first theory is in line with ‘visit counters’ exploration

(Figure 2a), while the second is in line with exploration

that is motivated by prediction-error or information-gain

(Figure 2c).

Concluding remarks
Substantial progress has been made in recent years in the

development of algorithms for efficient exploration, and

in understanding the computational principles underlying

human exploration. While bandit tasks have been pivotal

for understanding many aspects of the computational

principles underlying exploratory behavior, they failed

to capture what we view as the major difference between

human and machine exploration — the extensive use of

prior knowledge in human learning. In machine learning,

this prior knowledge is implicitly embedded in the spe-

cific hypothesis classes used for function approximation.

This prior knowledge, however, is very different from

that utilized by humans, as described above. One excep-

tion may be the weight sharing and local connectivity in

convolutional neural networks, where prior knowledge

about the homogeneity of low-level statistical dependen-

cies in natural images is implemented in the structure and

learning of the network. The difference between humans

and machines may be easy to miss in bandit tasks, but it is

easily seen in more ecological tasks that have a complex

structure [43,61]. Such tasks will not only allow us to more

fully understand human behavior, their focus on prior

knowledge can aid us in creating ML algorithms that

better solve real-life problems.
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