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Abstract It is generally believed that during economic decisions, striatal neurons represent the

values associated with different actions. This hypothesis is based on studies, in which the activity of

striatal neurons was measured while the subject was learning to prefer the more rewarding action.

Here we show that these publications are subject to at least one of two critical confounds. First, we

show that even weak temporal correlations in the neuronal data may result in an erroneous

identification of action-value representations. Second, we show that experiments and analyses

designed to dissociate action-value representation from the representation of other decision

variables cannot do so. We suggest solutions to identifying action-value representation that are not

subject to these confounds. Applying one solution to previously identified action-value neurons in

the basal ganglia we fail to detect action-value representations. We conclude that the claim that

striatal neurons encode action-values must await new experiments and analyses.

DOI: https://doi.org/10.7554/eLife.34248.001

There is a long history of operant learning experiments, in which a subject, human or animal, repeat-

edly chooses between actions and is rewarded according to its choices. A popular theory posits that

the subject’s decisions in these tasks utilize estimates of the different action-values. These action-val-

ues correspond to the expected reward associated with each of the actions, and actions associated

with a higher estimated action-value are more likely to be chosen (Sutton and Barto, 1998). In

recent years, there is a lot of interest in the neural mechanisms underlying this computation

(Louie and Glimcher, 2012; Schultz, 2015). In particular, based on electrophysiological, functional

magnetic resonance imaging (fMRI) and intervention experiments, it is now widely accepted that a

population of neurons in the striatum represents these action-values, adding sway to this action-

value theory (Cai et al., 2011; FitzGerald et al., 2012; Funamizu et al., 2015; Guitart-Masip et al.,

2012; Her et al., 2016; Ito and Doya, 2009; 2015a; Ito and Doya, 2015b; Kim et al., 2013;

Kim et al., 2009; Kim et al., 2012; 2007; Lau and Glimcher, 2008; Lee et al., 2015;

Samejima et al., 2005; Stalnaker et al., 2010; Tai et al., 2012; Wang et al., 2013;

Wunderlich et al., 2009). Here we challenge the evidence for action-value representation in the stri-

atum by describing two major confounds in the interpretation of the data that have not yet been

successfully addressed.

To identify neurons that represent the values the subject associates with the different actions,

researchers have searched for neurons whose firing rate is significantly correlated with the average

reward associated with exactly one of the actions. There are several ways of defining the average

reward associated with an action. For example, the average reward can be defined by the reward

schedule, for example, the probability of a reward associated with the action. Alternatively, one can

adopt the subject’s perspective, and use the subject-specific history of rewards and actions in order

to estimate the average reward. In particular, the Rescorla–Wagner model (equivalent to the stan-

dard ones-state Q-learning model) has been used to estimate action-values (Kim et al., 2009;
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Samejima et al., 2005). In this model, the value associated with an action i in trial t, termed Qi tð Þ, is

an exponentially-weighted average of the rewards associated with this action in past trials:

Qi tþ 1ð Þ ¼Qi tð Þþa R tð Þ�Qi tð Þð Þ if a tð Þ ¼ i (1)

Qi tþ 1ð Þ ¼Qi tð Þ if aðtÞ 6¼ i

where a tð Þ and R tð Þ denote the choice and reward in trial t, respectively, and a is the learning rate.

The model also posits that in a two-alternative task, the probability of choosing an action is a sig-

moidal function, typically softmax, of the difference of the action-values (see also [Shteingart and

Loewenstein, 2014]):

Pr a tð Þ ¼ 1ð Þ ¼
1

1þ e�b Q1 tð Þ�Q2 tð Þð Þ
(2)

where b is a parameter that determines the bias towards the action associated with the higher

action-value. The parameters of the model, a and b, can be estimated from the behavior, allowing

the researchers to compute Q1 and Q2 on a trial-by-trial basis.

In principle, one can identify the neurons that represent an action-value by identifying neurons for

which the regression of the trial-by-trial spike count on one of the variables Qi tð Þ is statistically signifi-

cant. Using this framework, electrophysiological studies have found that the firing rate of a substan-

tial fraction of striatal neurons (12–40% for different significance thresholds) is significantly

correlated with an action-value. These and similar results were considered as evidence that neurons

in the striatum represent action-values (Funamizu et al., 2015; Her et al., 2016; Ito and Doya,

2015a; Ito and Doya, 2015b; Kim et al., 2013; Kim et al., 2009; Lau and Glimcher, 2008;

Samejima et al., 2005).

In this paper we conduct a systematic literature search and conclude that the literature has, by

and large, ignored two major confounds in this and in similar analyses. First, it is well-known that

spurious correlations can emerge in correlation analysis if both variables have temporal correlations

(Granger and Newbold, 1974; Phillips, 1986). Here we show that neurons can be erroneously clas-

sified as representing action-values when their firing rates are weakly temporally correlated. Second,

it is also well-known that lack of a statistically significant result in the analysis does not imply lack of

correlation. Because in standard analyses neurons are classified as representing action-values if they

have a significant regression coefficient on exactly one action-value and because decision variables

such as policy are correlated with both action-values, neurons representing other decision variables

may be misclassified as representing action-values. We propose different approaches to address

these issues. Applying one of them to recordings from the basal ganglia, we fail to identify any

action-value representation there. Thus, we conclude that the hypothesis that striatal neurons repre-

sent action-values still remains to be tested by experimental designs and analyses that are not sub-

ject to these confounds. In the Discussion we address additional conceptual issues with identifying

such a representation.

This paper discusses methodological problems that may also be of relevance in other fields of

biology in general and neuroscience in particular. Nevertheless, the focus of this paper is a single sci-

entific claim, namely, that action-value representation in the striatum is an established fact. Our criti-

cism is restricted to the representation of action-values, and we do not make any claims regarding

the possible representations of other decision variables, such as policy, chosen-value or reward-pre-

diction-error. This we leave for future studies. Moreover, we do not make any claims about the possi-

ble representations of action-values elsewhere in the brain, although our results suggest caution

when looking for such representations.

The paper is organized in the following way. We commence by describing a standard method for

identifying action-value neurons. Next, we show that this method erroneously classifies simulated

neurons, whose activity is temporally correlated, as representing action-values. We show that this

confound brings into question the conclusion of many existing publications. Then, we propose differ-

ent methods for identifying action-value neurons, that overcome this confound. Applying such a

method to basal ganglia recordings, in which action-value neurons were previously identified, we fail

to conclusively detect any action-value representations. We continue by discussing the second con-

found: neurons that encode the policy (the probability of choice) may be erroneously classified as
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representing action-value, even when the policy is the result of learning algorithms that are devoid

of action-value calculation. Then we discuss a possible solution to this confound.

Results

Identifying action-value neurons
We commence by examining the standard methods for identifying action-value neurons using a sim-

ulation of an operant learning experiment. We simulated a task, in which the subject repeatedly

chooses between two alternative actions, which yield a binary reward with a probability that

depends on the action. Specifically, each session in the simulation was composed of four blocks such

that the probabilities of rewards were fixed within a block and varied between the blocks. The prob-

abilities of reward in the blocks were (0.1,0.5), (0.9,0.5), (0.5,0.9) and (0.5,0.1) for actions 1 and 2,

respectively (Figure 1A). The order of blocks was random and a block terminated when the more

rewarding action was chosen more than 14 times within 20 consecutive trials (Ito and Doya, 2015a;

Samejima et al., 2005).

To simulate learning behavior, we used the Q-learning framework (Equations 1 and 2 with a ¼

0:1 and b ¼ 2:5 (taken from distributions reported in [Kim et al., 2009]) and initial conditions

Qi 1ð Þ ¼ 0:5). As demonstrated in Figure 1A, the model learned: the probability of choosing the

more rewarding alternative increased over trials (black line). To model the action-value neurons, we

simulated neurons whose firing rate is a linear function of one of the two Q-values and whose spike

count in a 1 sec trial is randomly drawn from a corresponding Poisson distribution (see Materials and

methods). The firing rates and spike counts of two such neurons, representing action-values 1 and 2,

are depicted in Figure 1B in red and blue, respectively.

One standard method for identifying action-value neurons is to compare neurons’ spike counts

after learning, at the end of the blocks (horizontal bars in Figure 1B). Considering the red-labeled

Poisson neuron, the spike count in the last 20 trials of the second block, in which the probability of

reward associated with action 1 was 0.9, was significantly higher than that count in the first block, in

which the probability of reward associated with action 1 was 0.1 (p<0.01; rank sum test). By contrast,

there was no significant difference in the spike counts between the third and fourth blocks, in which

the probability of reward associated with action 1 was equal (p=0.91; rank sum test). This is consis-

tent with the fact that the red-labeled neuron was an action 1-value neuron: its firing rate was a lin-

ear function of the value of action 1 (Figure 1B, red) Similarly for the blue labeled neuron, the spike

counts in the last 20 trials of the first two blocks were not significantly different (p=0.92; rank sum

test), but there was a significant difference in the counts between the third and fourth blocks

(p<0.001; rank sum test). These results are consistent with the probabilities of reward associated

with action 2 and the fact that in our simulations, this neuron’s firing rate was modulated by the

value of action 2 (Figure 1B, blue).

This approach for identifying action-value neurons is limited, however, for several reasons. First, it

considers only a fraction of the data, the last 20 trials in a block. Second, action-value neurons are

not expected to represent the block average probabilities of reward. Rather, they will represent a

subjective estimate, which is based on the subject-specific history of actions and rewards. Therefore,

it is more common to identify action-value neurons by regressing the spike count on subjective

action-values, estimated from the subject’s history of choices and rewards (Funamizu et al., 2015;

Ito and Doya, 2015a; Ito and Doya, 2015b; Kim et al., 2009; Lau and Glimcher, 2008;

Samejima et al., 2005). Note that when studying behavior in experiments, we have no direct access

to these estimated action-values, in particular because the values of the parameters a and b are

unknown. Therefore, following common practice, we estimated the values of a and b from the mod-

el’s sequence of choices and rewards using maximum likelihood, and used the estimated learning

rate (a) and the choices and rewards to estimate the action-values (thin lines in Figure 1C, see Mate-

rials and methods). These estimates were similar to the true action-value, which underlay the model’s

choice behavior (thick lines in Figure 1C).

Next, we regressed the spike count of each simulated neuron on the two estimated action-values

from its corresponding session. As expected, the t-value of the regression coefficient of the red-

labeled action 1-value neuron was significant for the estimated Q1 t182 Q1ð Þ ¼ 4:05ð Þ but not for the

estimated Q2 t182 Q2ð Þ ¼ �0:27ð Þ. Similarly, the t-value of the regression coefficient of the blue-labeled
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Figure 1. Model of action-value neurons. (A) Behavior of the model in an example session, composed of four

blocks (separated by dashed vertical lines). The probabilities of reward for choosing actions 1 and 2 are denoted

Figure 1 continued on next page
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action 2-value neuron was significant for the estimated Q2 t182 Q2ð Þ ¼ 3:05ð Þ but not for the estimated

Q1 t182 Q1ð Þ ¼ 0:78ð Þ.

A population analysis of the t-values of the two regression coefficients is depicted in Figure 1D,

E. As expected, a substantial fraction (42%) of the simulated neurons were identified as action-value

neurons. Only 2% of the simulated neurons had significant regression coefficients with both action-

values. Such neurons are typically classified as state SQð Þ or policy (also known as preference) DQð Þ

neurons, if the two regression coefficients have the same or different signs, respectively (Ito and

Doya, 2015a). Note that despite the fact that by construction, all neurons were action-value neu-

rons, not all of them were detected as such by this method. This failure occurred for two reasons.

First, the estimated action-values are not identical to the true action-values, which determine the fir-

ing rates. This is because of the finite number of trials and the stochasticity of choice (note the differ-

ence, albeit small, between the thin and thick lines in Figure 1C). Second and more importantly, the

spike count in a trial is only a noisy estimate of the firing rate because of the Poisson generation of

spikes.

Several prominent studies have implemented the methods we described in this section and

reported that a substantial fraction (10–40% depending on significance threshold) of striatal neurons

represent action-values (Ito and Doya, 2015a; Ito and Doya, 2015b; Samejima et al., 2005). In the

next two sections we show that these methods, and similar methods employed by other studies

(Cai et al., 2011; FitzGerald et al., 2012; Funamizu et al., 2015; Guitart-Masip et al., 2012;

Her et al., 2016; Ito and Doya, 2009; Kim et al., 2013; Kim et al., 2009; Kim et al., 2012;

2007; Lau and Glimcher, 2008; Stalnaker et al., 2010; Wang et al., 2013; Wunderlich et al.,

2009) are all subject to at least one of two major confounds.

Confound 1 – temporal correlations
Simulated random-walk neurons are erroneously classified as action-value
neurons
The red and blue-labeled neurons in Figure 1D were classified as action-value neurons because their

t-values were improbable under the null hypothesis that the firing rate of the neuron is not modu-

lated by action-values. The significance threshold (t = 2) was computed assuming that trials are inde-

pendent in time. To see why this assumption is essential, we consider a case in which it is violated.

Figure 2A depicts the firing rates and spike counts of two simulated Poisson neurons, whose firing

rates follow a bounded Gaussian random-walk process:

Figure 1 continued

by the pair of numbers above the block. Black line denotes the probability of choosing action 1; vertical lines

denote choices in individual trials, where red and blue denote actions 1 and 2, respectively, and long and short

lines denote rewarded and unrewarded trials, respectively. (B) Neural activity. Firing rate (line) and spike-count

(dots) of two example simulated action-value neurons in the session depicted in (A). The red and blue-labeled

neurons represent Q1 and Q2, respectively. Black horizontal lines denote the mean spike count in the last 20 trials

of the block. Error bars denote the standard error of the mean. The two asterisks denote p<0.01 (rank sum test).

(C) Values. Thick red and blue lines denote Q1 and Q2, respectively. Note that the firing rates of the two neurons in

(B) are a linear function of these values. Thin red and blue lines denote the estimates of Q1 and Q2, respectively,

based on the choices and rewards in (A). The similarity between the thick and thin lines indicates that the

parameters of the model can be accurately estimated from the behavior (see also Materials and methods). (D) and

(E) Population analysis. (D) Example of 500 simulated action-value neurons from randomly chosen sessions. Each

dot corresponds to a single neuron and the coordinates correspond to the t-values of the regression of the spike

counts on the estimated values of the two actions. Dashed lines at t=2 denote the significance boundaries. Color

of dots denote significance: dark red and blue denote a significant regression coefficient on exactly one estimated

action-value, action 1 or action 2, respectively; light blue – significant regression coefficients on both estimated

action-values with similar signs (SQÞ); orange - significant regression coefficients on both estimated action-values

with opposite signs (DQÞ); Black – no significant regression coefficients. The two simulated neurons in (B) are

denoted by squares. (E) Fraction of neurons in each category, estimated from 20,000 simulated neurons in 1,000

sessions. Error bars denote the standard error of the mean. Dashed lines denote the naı̈ve expected false positive

rate from the significance threshold (see Materials and methods).

DOI: https://doi.org/10.7554/eLife.34248.002
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Figure 2. Erroneous detection of action-value representation in random-walk neurons. (A) Two example random-

walk neurons that appear as if they represent action-values. The red (top) and blue (bottom) lines denote the

estimated action-values 1 and 2, respectively that were depicted in Figure 1C. Gray lines and gray dots denote

Figure 2 continued on next page
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f tþ 1ð Þ ¼ f tð Þþ z tð Þ½ �þ (3)

where f tð Þ is the firing rate in trial t (we consider epochs of 1 second as ‘trials’), z tð Þ is a diffusion vari-

able, randomly and independently drawn from a normal distribution with mean 0 and variance s2 ¼

0:01 and x½ �þ denotes a linear-threshold function, x½ �þ¼ x if x� 0 and 0 otherwise.

These random-walk neurons are clearly not action-value neurons. Nevertheless, we tested them

using the analyses depicted in Figure 1. To that goal, we randomly matched the trials in the simula-

tion of the random-walk neurons (completely unrelated to the task) to the trials in the simulation

depicted in Figure 1A. Then, we considered the spike counts of the random-walk neurons in the last

20 trials of each of the four blocks in Figure 1A (block being defined by the simulation of learning

and is unrelated to the activity of the random-walk neurons). Surprisingly, when considering the top

neuron in Figure 2A and utilizing the same analysis as in Figure 1B, we found that its spike count

differed significantly between the first two blocks (p<0.01, rank sum test) but not between the last

two blocks (p=0.28, rank sum test), similarly to the simulated action 1-value neuron of Figure 1B

(red). Similarly, the spike count of the bottom random-walk neuron matched that of a simulated

action 2-value neuron (compare with the blue-labeled neuron in Figure 1B; Figure 2A).

Figure 2 continued

the firing rates and the spike counts of two example random-walk neurons that were randomly assigned to this

simulated session. Black horizontal lines denote the mean spike count in the last 20 trials of each block. Error bars

denote the standard error of the mean. The two asterisks denote p<0.01 (rank sum test). (B) and (C) Population

analysis. Each random-walk neuron was regressed on the two estimated action-values, as in Figure 1D and E.

Numbers and legend are the same as in Figure 1D and E. The two random-walk neurons in (A) are denoted by

squares in (B). Dashed lines in (B) at t=2 denote the significance boundaries. Dashed lines in (C) denote the naı̈ve

expected false positive rate from the significance threshold (see Materials and methods). (D) Fraction of random-

walk neurons classified as action-value neurons (red), and classified as state neurons (SQ) or policy neurons (DQ)

(green) as a function of the magnitude of the diffusion parameter of random-walk (s). Light red and light green are

standard error of the mean. Dashed lines denote the results for s=0.1, which is the value of the diffusion

parameter used in (A)-(C). Initial firing rate for all neurons in the simulations is f 1ð Þ ¼ 2:5Hz.

DOI: https://doi.org/10.7554/eLife.34248.003

The following figure supplements are available for figure 2:

Figure supplement 1. Erroneous detection of action-value representation in a model with covariance based

synaptic plasticity.

DOI: https://doi.org/10.7554/eLife.34248.004

Figure supplement 2. Erroneous detection of action-value neurons in unrelated experiments.

DOI: https://doi.org/10.7554/eLife.34248.005

Figure supplement 3. Erroneous detection of unrelated action-value representations in basal ganglia neurons.

DOI: https://doi.org/10.7554/eLife.34248.006

Figure supplement 4. Spike count permutation (as in [Kim et al., 2009]) does not resolve the temporal

correlations confound.

DOI: https://doi.org/10.7554/eLife.34248.007

Figure supplement 5. Autoregressive coefficients do not resolve the temporal correlations confound.

DOI: https://doi.org/10.7554/eLife.34248.008

Figure supplement 6. Regression on reward probabilities does not resolve the temporal correlations confound.

DOI: https://doi.org/10.7554/eLife.34248.009

Figure supplement 7. Detrending analysis does not resolve the temporal correlations confound.

DOI: https://doi.org/10.7554/eLife.34248.010

Figure supplement 8. Unbiased classification of action-value neurons does not resolve the temporal correlations

confound.

DOI: https://doi.org/10.7554/eLife.34248.011

Figure supplement 9. Random intermingling of estimated action-values does not resolve the temporal

correlations confound.

DOI: https://doi.org/10.7554/eLife.34248.012

Figure supplement 10. Increasing the number of blocks does not resolve the temporal correlations confound.

DOI: https://doi.org/10.7554/eLife.34248.013
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Moreover, we regressed each vector of spike counts for 20,000 random-walk neurons on ran-

domly matched estimated action-values from Figure 1E and computed the t-values (Figure 2B). This

analysis erroneously classified 42% of these random-walk neurons as action-value neurons (see

Figure 2C). In particular, the top and bottom random-walk neurons of Figure 2A were identified as

action-value neurons for actions 1 and 2, respectively (squares in Figure 2B).

To further quantify this result, we computed the fraction of random-walk neurons erroneously

classified as action-value neurons as a function of the diffusion parameter s (Figure 2D). When s=0,

the spike counts of the neurons in the different trials are independent and the number of random-

walk neurons classified as action-value neurons is slightly less than 10%, the fraction expected by

chance from a significance criterion of 5% and two statistical tests, corresponding to the two action-

values. The larger the value of s, the higher the probability that a random-walk neuron will pass the

selection criterion for at least one action-value and thus be erroneously classified as an action-value,

state or policy neuron.

The excess action-value neurons in Figure 2 emerged because the significance boundary in the

statistical analysis was based on the assumption that the different trials are independent from each

other. In the case of a regression of a random-walk process on an action-value related variable, this

assumption is violated. The reason is that in this case, both predictor (action-value) and the depen-

dent variable (spike count) slowly change over trials, the former because of the learning and the lat-

ter because of the random drift. As a result, the statistic, which relates these two signals, is

correlated between trials, violating the independence-of-trials assumption of the test. Because of

these dependencies, the expected variance of the statistic (be it average spike count in 20 trials or

the regression coefficient), which is calculated under the independence-of-trials assumption, is an

underestimate of the actual variance. Therefore, the fraction of random-walk neurons classified as

action-value neurons increases with the magnitude of the diffusion, which is directly related to the

magnitude of correlations between spike counts in proximate trials (Figure 2D). The phenomenon of

spurious significant correlations in time-series with temporal correlations has been described previ-

ously in the field of econometrics and a formal discussion of this issue can be found in (Granger and

Newbold, 1974; Phillips, 1986).

Is this confound relevant to the question of action-value representation in
the striatum?
Is a random-walk process a good description of striatal neurons’ activity?
The Gaussian random-walk process is just an example of a temporally correlated firing rate and we

do not argue that the firing rates of striatal neurons follow such a process. However, any other type

of temporal correlations, for example, oscillations or trends, will violate the independence-of-trials

assumption, and may lead to the erroneous classification of neurons as representing action-values.

Such temporal correlations can also emerge from stochastic learning. For example, in Figure 2—fig-

ure supplement 1 we consider a model of operant leaning that is based on covariance based synap-

tic plasticity (Loewenstein, 2008; Loewenstein, 2010; Loewenstein and Seung, 2006;

Neiman and Loewenstein, 2013) and competition (Bogacz et al., 2006). Because such plasticity

results in slow changes in the firing rates of the neurons, applying the analysis of Figure 1E to our

simulations results in the erroneous classification of 43% of the simulated neurons as representing

action-values. This is despite the fact that action-values are not computed as part of this learning,

neither explicitly or implicitly.

Are temporal correlations in neural recordings sufficiently strong to affect
the analysis?
To test the relevance of this confound to experimentally-recorded neural activity, we repeated the

analysis of Figure 2B,C on neurons recorded in two unrelated experiments: 89 neurons from extra-

cellular recordings in the motor cortex of an awake monkey (Figure 2—figure supplement 2A–B)

and 39 auditory cortex neurons recorded intracellularly in anaesthetized rats (Figure 2—figure sup-

plement 2C–D; [Hershenhoren et al., 2014]). We regressed the spike counts on randomly matched

estimated action-values from Figure 1E. In both cases we erroneously classified neurons as repre-

senting action-value in a fraction comparable to that reported in the striatum (36 and 23%,

respectively).
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Strong temporal correlations in the striatum
To test the relevance of this confound to striatal neurons, we considered previous recordings from

neurons in the nucleus accumbens (NAc) and ventral pallidum (VP) of rats in an operant learning

experiment (Ito and Doya, 2009) and regressed their spike counts on simulated, unrelated action-

values (using more blocks and trials than in Figure 1E, see Figure legend). Note that although the

recordings were obtained during an operant learning task, the action-values that we used in the

regression were obtained from simulated experiments and were completely unrelated to the true

experimental settings. Again, we erroneously classified a substantial fraction of neurons (43%) as

representing action-values, a fraction comparable to that reported in the striatum (Figure 2—figure

supplement 3).

Haven’t previous publications acknowledged this confound and successfully
addressed it?
We conducted an extensive literature search to see whether previous studies have identified this

confound and addressed it (see Materials and methods). Two studies noted that processes such as

slow drift in firing rate may violate the independence-of-trials assumption of the statistical tests and

suggested unique methods to address this problem (Kim et al., 2013; Kim et al., 2009): one

method (Kim et al., 2009) relied on permutation of the spike counts within a block (Figure 2—fig-

ure supplement 4, see Materials and methods) and another (Kim et al., 2013), used spikes in previ-

ous trials as predictors (Figure 2—figure supplement 5). However, both approaches still

erroneously classify unrelated recorded and random-walk neurons as action-value neurons (Fig-

ure 2—figure supplements 4 and 5). The failure of both these approaches stems from the fact that

a complete model of the learning-independent temporal correlations is lacking. As a result, these

methods are unable to remove all the temporal correlations from the vector of spike-counts.

Our literature search yielded four additional methods that have been used to identify action-value

neurons. However, as depicted in Figure 2—figure supplement 6 (corresponding to the analyses in

[Ito and Doya, 2009; Samejima et al., 2005]), Figure 2—figure supplement 7 (corresponding to

the analysis in [Ito and Doya, 2015a]), Figure 2—figure supplement 8 (corresponding to the analy-

sis in [Wang et al., 2013]) and Figure 2—figure supplement 9 (corresponding to a trial design

experiment in [FitzGerald et al., 2012]), all these additional methods erroneously classify neurons

from unrelated recordings and random-walk neurons as action-value neurons in numbers compara-

ble to those reported in the striatum (Figure 2—figure supplement 6–9). The fMRI analysis in

(FitzGerald et al., 2012) focused on the difference between action-values rather than on the action-

values themselves (see confound 2), and therefore we did not attempt to replicate it (and cannot

attest to whether it is subject to the temporal correlations confound). We did, however, conduct the

standard analysis on their unique experimental design - a trial-design experiment in which trials with

different reward probabilities are randomly intermingled. Surprisingly, we erroneously detect action-

value representation even when using this trial design (Figure 2—figure supplement 9). This errone-

ous detection occurs because in this analysis, the regression’s predictors are estimated action-values,

which are temporally correlated. From this example it follows that even trial-design experiments may

still be subject to the temporal correlations confound.

Some previous publications used more blocks. Shouldn’t adding blocks
solve the problem?
In Figures 1 and 2 we considered a learning task composed of four blocks with a mean length of

174 trials (standard deviation 43 trials). It is tempting to believe that experiments with more blocks

and trials (e.g., [Ito and Doya, 2009; Wang et al., 2013]) will be immune to this confound. The intui-

tion is that the larger the number of trials, the less likely it is that a neuron that is not modulated by

action-value (e.g., a random-walk neuron) will have a large regression coefficient on one of the

action-values. Surprisingly, however, this intuition is wrong. In Figure 2—figure supplement 10 we

show that doubling the number of blocks, so that the original blocks are repeated twice, each time

in a random order, does not decrease the fraction of neurons erroneously classified as representing

action-values. For the case of random-walk neurons, it can be shown that, contrary to this intuition,

the fraction of erroneously identified action-value neurons is expected to increase with the number

of trials (Phillips, 1986). This is because the expected variance of the regression coefficients under

the null hypothesis is inversely proportional to the degrees of freedom, which increase with the
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number of trials. As a result, the threshold for classifying a regression coefficient as significant

decreases with the number of trials.

Possible solutions to the temporal correlations confound
The temporal correlations confound has been acknowledged in the fMRI literature, and several

methods have been suggested to address it, such as ‘prewhitening’ (Woolrich et al., 2001). How-

ever, these methods require prior knowledge, or an estimate of the predictor-independent temporal

correlations. Both are impractical for the slow time-scale of learning and therefore are not applicable

in the experiments we discussed.

Another suggestion is to assess the level of autocorrelations between trials in the data and to use

it to predict the expected fraction of erroneous classification of action-value neurons. However,

using such a measure is problematic in the context of action-value representation because the auto-

correlations relevant for the temporal correlations confound are those associated with the time-scale

relevant for learning - tens of trials. Computing such autocorrelations in experiments of a few hun-

dreds of trials introduces substantial biases (Kohn, 2006; Newbold and Agiakloglou, 1993). More-

over, even when these autocorrelations are computed, it is not clear exactly how they can be used

to estimate the expected false positive rate for action-value classification.

Finally, it has been suggested that the temporal correlation confound can be addressed by using

repeating blocks and removing neurons whose activity is significantly different in identical blocks

(Asaad et al., 2000; Mansouri et al., 2006). We applied this method by applying a design in which

the four blocks of Figure 1 are repeated twice. However, even when this method was applied, a sig-

nificant number of neurons were erroneously classified as representing action-values (Materials and

methods).

We therefore propose two alternative approaches.

Permutation analysis
Trivially, an action-value neuron (or any task-related neuron) should be more strongly correlated with

the action-value of the experimental session, in which the neuron was recorded, than with action-val-

ues of other sessions (recorded in different days). We propose to use this requirement in a permuta-

tion test, as depicted in Figure 3. We first consider the two simulated action-value neurons of

Figure 1B. For each of the two neurons, we computed the t-values of the regression coefficients of

the spike counts on each of the estimated action-values in all possible sessions (see Materials and

methods). Figure 3A depicts the two resulting distributions of t-values. As a result of the temporal

correlations, the 5% significance boundaries (vertical dashed lines), which are defined to be

exceeded by exactly 5% of t-values in each distribution, are substantially larger (in absolute value)

than 2, the standard significance boundaries. On this analysis, a neuron is significantly correlated

with an action-value if the t-value of the regression on the action-value from its corresponding ses-

sion exceeds the significance boundaries derived from the regression of its spike count on all possi-

ble action-values.

Indeed, when considering the Top (red) simulated action 1-value neuron, we find that its spike

count has a significant regression coefficient on the estimated Q1 from its session (red arrow) but not

on the estimated Q2 (blue arrow). Importantly, because the significance boundary exceeds 2, this

approach is less sensitive than the original one (Figure 1) and indeed, the regression coefficients of

the Bottom simulated neuron (blue) do not exceed the significance level (red and blue arrows) and

thus this analysis fails to identify it as an action-value neuron. Considering the population of simu-

lated action-value neurons of Figure 1, this analysis identified 29% of the action-value neurons of

Figure 1 as such (Figure 3B, green), demonstrating that this analysis can identify action-value neu-

rons. When considering the random-walk neurons (Figure 2), this method classifies only approxi-

mately 10% of the random-walk neurons as action-value neurons, as predicted by

chance (Figure 3B, yellow). Similar results were obtained for the motor cortex and auditory cortex

neurons (not shown).

Permutation analysis of basal ganglia neurons
Importantly, this permutation method can also be used to reanalyze the activity of

previously recorded neurons. To that goal, we considered the recordings reported in (Ito and Doya,

2009). The results of their model-free method (Figure 2—figure supplement 6) imply that
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Figure 3. Permutation analysis. (A) Red and blue correspond to red and blue - labeled neurons in Figure 1B.

Arrow-heads denote the t-values from the regressions on the estimated action-values from the session in which

the neuron was simulated (depicted in Figure 1A). The red and blue histograms denote the t-values of the

regressions of the spike-count on estimated action-values from different sessions in Figure 1E (Materials and

methods). Dashed black lines denote the 5% significance boundary. In this analysis, the regression coefficient of

neural activity on an action-value is significant if it exceeds these significance boundaries. Note that because of

the temporal correlations, these significance boundaries are larger than ±2 (the significance boundaries in

Figure 1,2). According to this permutation test the red-labeled but not the blue-labeled neuron is classified as an

action-value neuron (B) Fraction of neurons classified in each category using the permutation analysis for the

action-value neurons (green, Figure 1) and random-walk neurons (yellow, Figure 2).Dashed lines denote the naı̈ve

expected false positive rate from the significance threshold (Materials and methods). Error bars denote the

standard error of the mean. The test correctly identifies 29% of actual action-value neurons as such, while

classification of random-walk neurons was at chance level. Analysis was done on 10,080 action-value neurons and

10,077 random-walk neurons from 504 simulated sessions (C) Light orange, fraction of basal ganglia neurons from

Figure 3 continued on next page
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approximately 23% of the recorded neurons represent action-values at different phases of the exper-

iment. As a first step, we estimated the action-values and regressed the spike counts in the different

phases of the experiment on the estimated action-values, as in Figure 1 (activity in each phase is

analyzed as if it is a different neuron; see Materials and methods). The results of this analysis implied

that 32% of the neurons represent action values (p<0.01) (Figure 3—figure supplement 1). Next,

we applied the permutation analysis. Remarkably, this analysis yielded that only 3.6% of the neurons

have a significantly higher regression coefficient on an action-value from their session than on other

action-values (Figure 3C). Similar results were obtained when performing a similar model-free per-

mutation analysis (regression of spike counts in the last 20 trials of the block on reward probabilities,

not shown). These results raise the possibility that all or much of the apparent action-value represen-

tation in (Ito and Doya, 2009) is the result of the temporal correlations confound.

Trial-design experiments
Another way of overcoming the temporal correlations confound is to use a trial design experiment.

The idea is to randomly mix the reward probabilities, rather than use blocks as in Figure 1. For

example, we propose the experimental design depicted in Figure 4A. Each trial is presented in one

of four clearly marked contexts (color coded). The reward probabilities associated with the two

actions are fixed within a context but differ between the contexts. Within each context the partici-

pant learns to prefer the action associated with a higher probability of reward. Naively, we can

regress the spike counts on the action-values estimated from behavior, as in Figure 1. However,

because the estimated action-values are temporally correlated, this regression is still subject to the

temporal correlations confound (Figure 2—figure supplement 9). Alternatively, we can regress the

spike counts on the reward probabilities. If the contexts are randomly mixed, then by construction,

the reward probabilities are temporally independent. These reward probabilities are the objective

action-values. After learning, the subjective action-values are expected to converge to these reward

probabilities. Therefore, the reward probabilities can be used as proxies for the subjective action-

values after a sufficiently large number of trials. It is thus possible to conduct a regression analysis on

the spike counts at the end of the experiment, with reward probabilities as predictors that do not

violate the independence assumption.

To demonstrate this method, we simulated learning in a session composed of 400 trials, randomly

divided into 4 different contexts (Figure 4). Learning followed the Q-learning equations (Equations 1

and 2), independently for each context. Next, we simulated action-value neurons, whose firing rate

is a linear function of the action-value in each trial (dots in Figure 4A, upper panel). We regressed

the spike counts of the neurons in the last 200 trials (approximately 50 trials in each context) on the

corresponding reward probabilities (Figure 4B). Indeed, 59% of the neurons were classified this way

as action-value neurons (Figure 4C, 9.5% is chance level). By contrast, considering random-walk neu-

rons, only 8.5% were erroneously classified as action-value neurons, a fraction expected by chance.

Three previous studies used trial-designs to search for action-value representation in the striatum

(Cai et al., 2011; FitzGerald et al., 2012; Kim et al., 2012). In two of them (Cai et al., 2011;

Kim et al., 2012) the reward probabilities were explicitly cued and therefore their results can be

interpreted in the framework of cue-values and not action-values (Padoa-Schioppa, 2011). More-

over, all these studies focused on significant neural modulation by both action-values or by their dif-

ference, analyses that support state or policy representations (Ito and Doya, 2015a). As discussed

in details in the next section, policy representation can emerge without action-value representation

Figure 3 continued

(Ito and Doya, 2009) classified in each category when regressing the spike count of 214 basal ganglia neurons in

three different experimental phases on the estimated action-values associated with their experimental session.

This analysis classified 32% of neurons as representing action-values. Dark orange, fraction of basal ganglia

neurons classified in each category when applying the permutation analysis. This test classified 3.6% of neurons as

representing action-value. Dashed line denotes significance level of p<0.01.

DOI: https://doi.org/10.7554/eLife.34248.014

The following figure supplement is available for figure 3:

Figure supplement 1. Analyses of basal ganglia data using estimated action-values from the neurons’ sessions.

DOI: https://doi.org/10.7554/eLife.34248.015
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Figure 4. A possible solution for the temporal correlations confound that is based on a trial design. (A) A

Q-learning model was simulated in 1,000 sessions of 400 trials, where the original reward probabilities (same as in

Figure 1A) were associated with different cues and appeared randomly. Learning was done separately for each

cue. Top panel: The first 20 trials in an example session. Background colors denote the reward probabilities in

Figure 4 continued on next page
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(Darshan et al., 2014; Fiete et al., 2007; Frémaux et al., 2010; Loewenstein, 2008; Loewen-

stein, 2010; Loewenstein and Seung, 2006; Neiman and Loewenstein, 2013; Seung, 2003;

Urbanczik and Senn, 2009). Therefore, the results reported in (Cai et al., 2011; FitzGerald et al.,

2012; Kim et al., 2012) cannot be taken as evidence for action-value representation in the striatum.

Confound 2 – correlated decision variables
In the previous sections we demonstrated that irrelevant temporal correlations may lead to the erro-

neous classification of neurons as representing action-values, even if their activity is task-indepen-

dent. Here we address an unrelated confound. We show that neurons that encode different decision

variables, in particular policy, may be erroneously classified as representing action-values. For clarity,

we will commence by discussing this caveat independently of the temporal correlations confound.

Specifically, we show that neurons whose firing rate encodes the policy (probability of choice) may

be erroneously classified as representing action-values, even when this policy emerged in the

absence of any implicit or explicit action-value representation. We will conclude by discussing a pos-

sible solution that addresses this and the temporal correlations confounds.

Policy without action-value representation
It is well-known that operant learning can occur in the absence of any value computation,

for example, as a result of direct-policy learning (Mongillo et al., 2014). Several studies have shown

that reward-modulated synaptic plasticity can implement direct-policy reinforcement learning

(Darshan et al., 2014; Fiete et al., 2007; Frémaux et al., 2010; Loewenstein, 2008; Loewen-

stein, 2010; Loewenstein and Seung, 2006; Neiman and Loewenstein, 2013; Seung, 2003;

Urbanczik and Senn, 2009).

For concreteness, we consider a particular reinforcement learning algorithm, in which the proba-

bility of choice Pr a tð Þ ¼ 1ð Þ is determined by a single variable W that is learned in accordance

with the REINFORCE learning algorithm (Williams, 1992): Pr a tð Þ ¼ 1ð Þ ¼ 1

1þe�W tð Þ where

W tð Þ ¼ a � 2 � R tð Þ � 1ð Þ � a tð Þ � Pr a tð Þ ¼ 1ð Þð Þ, where a is the learning rate, R tð Þ is the binary reward in

trial t and a tð Þ is a binary variable indicating whether action 1 was chosen in trial t. In our simulations

W t ¼ 1ð Þ ¼ 0, a ¼ 0:17. For biological implementation of this algorithm see (Loewenstein, 2010;

Seung, 2003).

We tested this model in the experimental design of Figure 1 (Figure 5A). As expected, the

model learned to prefer the action associated with a higher probability of reward, completing the

four blocks within 228 trials on average (standard deviation 62 trials).

Spike count of neurons representing policy are correlated with estimated
DQ
Despite the fact that the learning was value-independent, we can still fit a Q-learning model to the

behavior, extract best-fit model parameters and compute action-values (see also Figure 2—figure

Figure 4 continued

each trial. Black circles denote the learned value of action-value 1 in each trial. Top and bottom black lines denote

choices of action 1 and 2, respectively. Long and short lines denote rewarded and unrewarded trials, respectively.

Bottom panels: Two examples of the grouping of trials with the same reward probabilities to show the continuity

in learning. Note that the action-value changes only when action 1 is chosen because it is the action-value

associated with action 1. (B) and (C) population analysis for action-value neurons. 20,000 action-value neurons were

simulated from the model in (A), similarly to the action-value neurons in Figure 1. For each neuron, the spike-

counts in the last 200 trials of the session were regressed on the reward probabilities (see Materials and methods).

Legend is the same as in Figure 1D–E. Dashed lines in (B) at t=2 denote the significance boundaries. Dashed lines

in (C) denote the naı̈ve expected false positive rate from the significance threshold (see Materials and methods).

This analysis correctly identifies 59% of action-value neurons as such. (D) and (E) population analysis for random-

walk neurons. 20,000 Random-walk neurons were simulated as in Figure 2. Same regression analysis as in (B) and

(C). Only 8.5% of the random-walk neurons were erroneously classified as representing action-values (9.5% chance

level).

DOI: https://doi.org/10.7554/eLife.34248.016
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Figure 5. Erroneous detection of action-value representation in policy neurons. (A) Behavior of the model in an

example session, same as in Figure 1A for the direct-policy model. (B) Red and blue lines denote ‘action-values’ 1

and 2, respectively, calculated from the choices and rewards in (A). Note that the model learned without any

explicit or implicit calculation of action-values. The extraction of action-values in (B) is based on the fitting of

Equation 1 to the learning behavior. (C) Strong correlation between policy from the direct-policy algorithm and

Figure 5 continued on next page
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supplement 1). The computed action-values are presented in Figure 5B. Note that according to

Equation 2, the probability of choice is a monotonic function of the difference between Q1 and Q2.

Therefore, we expect that the probability of choice will be correlated with the computed Q1 and Q2,

with opposite signs (Figure 5C).

We simulated policy neurons as Poisson neurons whose firing rate is a linear function of the policy

Pr aðtÞ ¼ 1ð Þ (Materials and methods). Next, we regressed the spike counts of these neurons on the

two action-values that were computed from behavior (same as in Figures 1D,E and 2B,

C, Figure 2—figure supplement 1C,D, – Figure 2—figure supplement 2B,D, – Figure 2—figure

supplement 3). Indeed, as expected, 14% of the neurons were significantly correlated with both

action values with opposite signs (chance level for each action value is 5%, naı̈ve chance level for

both with opposite signs is 0.125%, see Materials and methods), as depicted in Figure 5D,E. These

results demonstrate that neurons representing value-independent policy can be erroneously classi-

fied as representing DQ.

Neurons representing policy may be erroneously classified as action-value
neurons
Surprisingly, 38% of policy neurons were significantly correlated with exactly one estimated action-

value, and therefore would have been classified as action-value neurons in the standard method of

analysis (9.5% chance level).

To understand why this erroneous classification emerged, we note that a neuron is classified as

representing an action-value if its spike count is significantly correlated with one of the action values,

but not with the other. The confound that led to the classification of policy neurons as representing

action-values is that a lack of statistically significant correlation is erroneously taken to imply lack of

correlation. All policy neurons are modulated by the probability of choice, a variable that is corre-

lated with the difference in the two action-values. Therefore, this probability of choice is expected to

be correlated with both action-values, with opposite signs. However, because the neurons are Pois-

son, the spike count of the neurons is a noisy estimate of the probability of choice. As a result, in

most cases (86%), the regression coefficients do not cross the significance threshold for both action-

values. More often (38%), only one of them crosses the significance threshold, resulting in an errone-

ous classification of the neurons as representing action values.

Is this confound relevant to the question of action-value representation in
the striatum?
If choice is included as a predictor, is policy representation still a relevant
confound?
It is common, (although not ubiquitous) to attempt to differentiate action-value representation from

choice representation by including choice as another regressor in the regression model (Cai et al.,

2011; FitzGerald et al., 2012; Funamizu et al., 2015; Her et al., 2016; Ito and Doya, 2015a;

Ito and Doya, 2015b; Kim et al., 2013; Kim et al., 2009; Kim et al., 2012; Lau and Glimcher,

2008). Such analyses may be expected to exclude policy neurons, whose firing rate is highly corre-

lated with choice, from being classified as action-value neurons. However, repeating this analysis for

Figure 5 continued

action-values extracted by fitting Equation 1 to behavior. The three panels depict probability of choice as a

function of the difference between the calculated action-values (left), ‘Q1’ (center) and ‘Q2’ (right). This correlation

can cause policy neurons to be erroneously classified as representing action-values (D) and (E) Population analysis,

same as in Figure 1D and E for the policy neurons. Legend and number of neurons are also as in Figure 1D and

E. Dashed lines in (D) at t=2 denote the significance boundaries. Dashed lines in (E) denote the naı̈ve expected

false positive rate from the significance threshold (see Materials and methods).

DOI: https://doi.org/10.7554/eLife.34248.017

The following figure supplement is available for figure 5:

Figure supplement 1. Alternative analyses do not resolve the correlated decision variables confound.

DOI: https://doi.org/10.7554/eLife.34248.018
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the policy neurons of Figure 5, we still erroneously classify 36% of policy neurons as action-value

neurons (Figure 5—figure supplement 1A).

An alternative approach has been to consider only those neurons whose spike count is not signifi-

cantly correlated with choice (Stalnaker et al., 2010; Wunderlich et al., 2009). Repeating this analy-

sis for the Figure 5 policy neurons, we still find that 24% of the neurons are erroneously classified as

action-value neurons (8% are classified as policy neurons).

Is this confound the result of an analysis that is biased against policy
representation?
The analysis depicted in Figures 1D,E, 2B,C, 4B–E and 5D,E is biased towards classifying neurons

as action-value neurons, at the expense of state or policy neurons, as noted by (Wang et al., 2013).

This is because action-value classification is based on a single significant regression coefficient

whereas policy or state classification requires two significant regression coefficients. Therefore,

(Wang et al., 2013) have proposed an alternative approach. First, compute the statistical signifi-

cance of the whole regression model for each neuron (using f-value). Then, classify those significant

neurons according to the t-values corresponding to the two action-values (Figure 5—figure supple-

ment 1B). Applying this analysis to the policy neurons of Figure 5 with a detection threshold of 5%

we find that indeed, this method is useful in detecting which decision variables are more frequently

represented (its major use in [Wang et al., 2013]): 25% of the neurons are classified as representing

policy (1.25% expected by chance). Nevertheless, 12% of the neurons are still erroneously classified

as action-value neurons (2.5% expected by chance; Figure 5—figure supplement 1B).

Additional issues
In many cases, the term action-value was used, while the reported results were equally consistent

with other decision variables. In some cases, significant correlation with both action-values (with

opposite signs) or significant correlation with the difference between the action-values was used as

evidence for ‘action-value representations’ (FitzGerald et al., 2012; Guitart-Masip et al., 2012;

Kim et al., 2012; 2007; Stalnaker et al., 2010). Similarly, other papers did not distinguish between

neurons whose activity is significantly correlated with one action-value and those whose activity is

correlated with both action-values (Funamizu et al., 2015; Her et al., 2016; Kim et al., 2013;

Kim et al., 2009). Finally, one study used a concurrent variable-interval schedule, in which the mag-

nitudes of rewards associated with each action were anti-correlated (Lau and Glimcher, 2008). In

such a design, the two probabilities of reward depend on past choices and therefore, the

objective values associated with the actions change on a trial-by-trial basis and are, in general,

correlated.

A possible solution to the policy confound
The policy confound emerged because policy and action-values are correlated. To distinguish

between the two possible representations, we should seek a variable that is correlated with the

action-value but uncorrelated with the policy. Consider the sum of the two action-values. It is easy to

see that Corr Q1 þ Q2;Q1 � Q2ð Þ / Var Q1ð Þ �Var Q2ð Þ. Therefore, if the variances of the two action-

values are equal, their sum is uncorrelated with their difference. An action-value neuron is expected

to be correlated with the sum of action-values. By contrast, a policy neuron, modulated by the differ-

ence in action-values is expected to be uncorrelated with this sum.

We repeated the simulations of Figure 4 (which addresses the temporal correlations confound),

considering three types of neurons: action-value neurons (of Figure 1), random-walk neurons (of Fig-

ure 2), and policy neurons (of Figure 5). As in Figure 4, we considered the spike counts of the three

types of neurons in the last 200 trials of the session, but now we regressed them on the sum of

reward probabilities (state; in this experimental design the reward probabilities are also the objec-

tive action-values, which the subject learns). We found that only 4.5 and 6% of the random-walk and

policy neurons, respectively, were significantly correlated with the sum of reward probabilities (5%

chance level). By contrast, 47% of the action-value neurons were significantly correlated with this

sum.

This method is able to distinguish between policy and action-value representations. However, it

will fail in the case of state representation because both state and action-values are correlated with

the sum of probabilities of reward. To dissociate between state and action-value representations, we
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can consider the difference in reward probabilities because this difference is correlated with the

action-values but is uncorrelated with the state. Regressing the spike count on both the sum and dif-

ference of the probabilities of reward, a random-walk neuron is expected to be correlated with

none, a policy neuron is expected to be correlated only with the difference, whereas an action-value

neuron is expected to be correlated with both (this analysis is inspired by Fig. S8b in (Wang et al.,

2013) in which the predictors in the regression model were policy and state). We now classify a neu-

ron that passes both significance tests as an action-value neuron. Indeed, for a significance threshold

of p<0.05 (for each test), only 0.2% of the random-walk neurons and 5% of the policy neurons were

classified as action-value neurons. By contrast, 32% of the action-value neurons were classified as

such (Figure 6). Note that in this analysis only when more than 5% of the neurons are classified as

action-value neurons we have support for the hypothesis that there is action-value representation

rather than policy or state representation.

A word of caution is that the analysis should be performed only after the learning converges. This

is because stochastic fluctuations in the learning process may be reflected in the activities of neurons

representing decision-related variables. As a result, policy or state-representing neurons may appear

correlated with the orthogonal variables. For the same reason, any block-related heterogeneity in

neural activity could also result in this confound (O’Doherty, 2014).

To conclude, it is worthwhile repeating the key features of the analysis proposed in this section:

1. Trial design is necessary because otherwise temporal correlations in spike count may inflate
the fraction of neurons that pass the significance tests.

2. Regression should be performed on reward probabilities (i.e., the objective action-values) and
not on estimated action-values. The reason is that because the estimated action-values evolve
over time, this trial design does not eliminate all temporal correlations between them (Fig-
ure 2—figure supplement 9).

3. Reward probabilities associated with the two actions should be chosen such that their varian-
ces should be equal. Otherwise policy or state neurons may be erroneously classified as
action-value neurons.

Discussion
In this paper, we performed a systematic literature search to discern the methods that have been

previously used to infer the representation of action-values in the striatum. We showed that none of

these methods overcome two critical confounds: (1) neurons with temporal correlations in their firing

rates may be erroneously classified as representing action-values and (2) neurons whose activity co-

varies with other decision variables, such as policy, may also be erroneously classified as represent-

ing action-values. Finally, we discuss possible experiments and analyses that can address the ques-

tion of whether neurons encode action-values.

Temporal correlations and action-value representations
It is well known in statistics that the regression coefficient between two independent slowly-chang-

ing variables is on average larger (in absolute value) than this coefficient when the series are devoid

of a temporal structure. If these temporal correlations are overlooked, the probability of a false-posi-

tive is underestimated (Granger and Newbold, 1974). When searching for action-value representa-

tion in a block design, then by construction, there are positive correlations in the predictor (action-

values). Positive temporal correlations in the dependent variable (neural activity) will result in an infla-

tion of the false-positive observations, compared with the naı̈ve expectation.

This confound occurs only when there are temporal correlations in both the predictor and the

dependent variable. In a trial design, in which the predictor is chosen independently in each trial and

thus has no temporal structure, we do not expect this confound. However, when studying incremen-

tal learning, it is difficult to randomize the predictor in each trial, making the task of identifying neu-

ral correlates of learning, and specifically action-values, challenging. With respect to the dependent

variable (neural activity), temporal correlations in BOLD signal and their consequences have been

discussed (Arbabshirani et al., 2014; Woolrich et al., 2001). Considering electrophysiological

recordings, there have been attempts to remove these correlations, for example, using previous

spike counts as predictors (Kim et al., 2013). However, these are not sufficient because they are
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Figure 6. A possible solution for the policy and state confounds. (A) The Q-learning model (Equations 1 and 2)

was simulated in 1,000 sessions of 400 trials each, where the reward probabilities were associated with different

cues and were randomly chosen in each trial, as in Figure 4. Learning occurred separately for each cue. In each

session 20 action-value neurons, whose firing rate is proportional to the action-values (as in Figure 1) were

Figure 6 continued on next page
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unable to remove all task-independent temporal correlations (see also Figure 2—figure supple-

ments 4–10). When repeating these analyses, we erroneously classified a fraction of neurons as rep-

resenting action-value that is comparable to that reported in the striatum. The probability of a false-

positive identification of a neuron as representing action-value depends on the magnitude and type

of temporal correlations in the neural activity. Therefore, we cannot predict the fraction of errone-

ously classified neurons expected in various experimental settings and brain areas.

One may argue that the fact that action-value representations are reported mostly in a specific

brain area, namely the striatum, is an indication that their identification there is not a result of the

temporal correlations confound. However, because different brain regions are characterized by dif-

ferent spiking statistics, we expect different levels of erroneous identification of action-value neurons

in different parts of the brain and in different experimental settings. Indeed, the fraction of errone-

ously identified action-value neurons differed between the auditory and motor cortices (compare B

and D within Figure 2—figure supplement 2). Furthermore, many studies reported action-value

representation outside of the striatum, in brain areas including the supplementary motor area and

presupplementary eye fields (Wunderlich et al., 2009), the substantia nigra/ventral tegmental area

(Guitart-Masip et al., 2012) and ventromedial prefrontal cortex, insula and thalamus

(FitzGerald et al., 2012).

Considering the ventral striatum, our analysis on recordings from (Ito and Doya, 2009) indicates

that the identification of action-value representations there may have been erroneous, resulting from

temporally correlated firing rates (Figure 3 and Figure 2—figure supplement 3). It should be noted

that the fraction of action-value neurons reported in (Ito and Doya, 2009) is low relative to other

publications, a difference that has been attributed to the location of the recording in the striatum

(ventral as opposed to dorsal). It would be interesting to apply this method to other striatal record-

ings (Ito and Doya, 2015a; Samejima et al., 2005; Wang et al., 2013). We were unable to directly

analyze these recordings from the dorsal striatum because relevant raw data is not publicly available.

However, previous studies have reported that the firing rates of dorsal-striatal neurons change slowly

over time (Gouvêa et al., 2015; Mello et al., 2015). As a result, identification of apparent action-

value representation in dorsal-striatal neurons may also be the result of this confound.

Temporal correlations naturally emerge in experiments composed of multiple trials. Participants

become satiated, bored, tired, etc., which may affect neuronal activity. In particular, learning in oper-

ant tasks is associated, by construction, with variables that are temporally correlated. If neural activ-

ity is correlated with performance (e.g., accumulated rewards in the last several trials) then it is

expected to have temporal correlations, which may lead to an erroneous classification of the neurons

as representing action-values.

Figure 6 continued

simulated. For each neuron, the spike-counts in the last 200 trials of each session were regressed on the sum of

the reward probabilities (SQ; state) and the difference of the reward probabilities (DQ; policy, see Materials and

methods). Each dot denotes the t-values of the two regression coefficients of each of 500 example neurons.

Dashed lines at t=2 denote the significance boundaries. Neurons that had significant regression coefficients on

both policy and state were identified as action-value neurons. Colors as in Figure 1D. (B) Population analysis

revealed that 32% of the action-value neurons were identified as such. Error bars are the standard error of the

mean. Dashed black line denotes the expected false positive rate from randomly modulated neurons. Dashed

gray line denotes the expected false positive rate from policy or state neurons (see Materials and methods) (C)

Same as in (A) with random-walk neurons, numbers are as in Figure 2. (D) Population analysis revealed that less

than 1% of the random-walk neurons were erroneously classified as representing action-values. (E-F) To test the

policy neurons, we simulated a direct-policy learning algorithm (as in Figure 5) in the same sessions as in (A-D).

Learning occurred separately for each cue. In each session 20 policy neurons, whose firing rate is proportional to

the probability of choice (as in Figure 5) were simulated. As in (A-D), the spike-counts in the last 200 trials of each

session were regressed on the sum and difference of the reward probabilities. (E) Each dot denotes the t-values of

the two regression coefficients of each of 500 example neurons. (F) Population analysis. As expected, only 5% of

the policy neurons were erroneously classified as representing action-values.

DOI: https://doi.org/10.7554/eLife.34248.019
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Temporal correlations – beyond action-value representation
Action-values are not the only example of slowly-changing variables. Any variable associated with

incremental learning, motivation or satiation is expected to be temporally correlated. Even ’benign’

behavioral variables, such as the location of the animal or the activation of different muscles may

change at relatively long time-scales. When recording neural activity related to these variables, any

temporal correlations in the neural recording, be it in fMRI, electrophysiology or calcium imaging

may result in an erroneous identification of correlates of these behavioral variables because of the

temporal correlation confound.

In general, the temporal correlation confound can be addressed by using the permutation analy-

sis of Figure 3, which can provide strong support to the claim that the activity of a particular neuron

or voxel co-varies with the behavioral variable. Therefore, the permutation test is a general solution

for scientists studying slow processes such as learning. More challenging, however, is precisely iden-

tifying what the activity of the neuron represents (for example an action-value or policy). There are

no easy solutions to this problem and therefore caution should be applied when interpreting the

data.

Differentiating action-value from other decision variables
Another difficulty in identifying action-value neurons is that they are correlated with other decision

variables such as policy, state or chosen-value. Therefore, finding a neuron that is significantly corre-

lated with an action-value could be the byproduct of its being modulated by other decision varia-

bles, in particular policy. The problem is exacerbated by the fact that standard analyses (e.g.,

Figure 1D–E) are biased towards classifying neurons as representing action-values at the expense of

policy or state.).

As shown in Figure 6, policy representation can be ruled out by finding a representation that is

orthogonal to policy, namely state representation. This solution leads us, however, to a serious con-

ceptual issue. All analyses discussed so far are based on significance tests: we divide the space of

hypothesis into the ‘scientific claim’ (e.g., neurons represent action-values) and the null hypothesis

(e.g., neural activity is independent of the task). An observation that is not consistent with the null

hypothesis is taken to support the alternative hypothesis.

The problem we faced with correlated variables is that the null hypothesis and the ‘scientific

claim’ were not complementary. A neuron that represents policy is expected to be inconsistent with

the null hypothesis that neural activity is independent of the task but it is not an action-value neuron.

The solution proposed was to devise a statistical test that seeks to identify a representation that is

correlated with action-value and is orthogonal to the policy hypothesis, in order to also rule out a

policy representation.

However, this does not rule out other decision-related representations. A ‘pure’ action-value neu-

ron is modulated only by Q1 or by Q2. A ‘pure’ policy neuron is modulated exactly by Q1 � Q2. More

generally, we may want to consider the hypotheses that the neuron is modulated by a different com-

bination of the action values, a � Q1 þ b � Q2, where a and b are parameters. For every such set of

parameters a and b we can devise a statistical test to reject this hypothesis by considering the direc-

tion that is orthogonal to the vector a; bð Þ. In principle, this procedure should be repeated for every

pair of parameters a and b that in not consistent with the action-value hypothesis.

Put differently, in order to find neurons that represent action-values, we first need to define the

set of parameters a and b such that a neuron whose activity is modulated by a � Q1 þ b � Q2 will be

considered as representing an action-value. Only after this (arbitrary) definition is given, can we con-

struct a set of statistical tests that will rule out the competing hypotheses, namely will rule out all val-

ues of a and b that are not in this set. The analysis of Figure 6 implicitly defined the set of a and b

such that a 6¼ b and a 6¼ �b as the set of parameters that defines action-value representations. In

practice, it is already very challenging to identify action-values using the procedure of Figure 6 and

going beyond it seems impractical. Therefore, studying the distribution of t-values across the popu-

lation of neurons may be more useful when studying representations of decision variables than ask-

ing questions about the significance of individual neurons.

Importantly, the regression models described in this paper allow us to investigate only some

types of representations, namely, linear combinations of the two action-values. However, value rep-

resentations in learning models may fall outside of this regime. It has been suggested that in
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decision making, subjects calculate the ratio of action-values (Worthy et al., 2008), or that subjects

compute, for each action, the probability that it is associated with the highest value (Morris et al.,

2014). Our proposed solution cannot support or refute these alternative hypotheses. If these are

taken as additional alternative hypotheses, a neuron should be classified as representing an action-

value if its activity is also significantly modulated in the directions that are correlated with action-

value and are orthogonal to these hypotheses. Clearly, it is never possible to construct an analysis

that can rule out all possible alternatives.

We believe that the confounds that we described have been overlooked because the null hypoth-

esis in the significance tests was not made explicit. As a result, the complementary hypothesis was

not explicitly described and the conclusions drawn from rejecting the null hypothesis were too spe-

cific. That is, alternative plausible interpretations were ignored. It is important, therefore, to keep

the alternative hypotheses explicit when analyzing the data, be it using significance tests or other

methods, such as model comparison (Ito and Doya, 2015b).

Are action-value representations a necessary part of decision making?
One may argue that the question of whether neurons represent action-value, policy, state or some

other correlated variable is not an interesting question. This is because all these correlated decision

variables implicitly encode action-values. Even direct-policy models can be taken to implicitly encode

action-values because policy is correlated with the difference between the action-values. However,

we believe that the difference between action-value representation and representation of other vari-

ables is an important one, because it centers on the question of the computational model that

underlies decision making in these tasks. Specifically, the implication of a finding that a population

of neurons represents action-values is not that these neurons are involved somehow in decision mak-

ing. Rather, we interpret this finding as supporting the hypothesis that action-values are explicitly

computed in the brain, and that these action-values play a specific role in the decision making pro-

cess. However, if the results are also consistent with various alternative computational models then

this is not the case. Some consider action-value computation to be a necessary part of decision mak-

ing. By contrast, however, we presented here two models of learning and decision making that do

not entail this computation (Figure 2—figure supplement 1, Figure 5). Other examples are dis-

cussed in (Mongillo et al., 2014; Shteingart and Loewenstein, 2014) and references therein.

Other indications for action-value representation
Several trial-design experiments have associated cues with upcoming rewards and reported repre-

sentations of expected reward, the upcoming action, or the interaction of action and reward

(Cromwell and Schultz, 2003; Cromwell et al., 2005; Hassani et al., 2001; Hori et al., 2009;

Kawagoe et al., 1998; Pasquereau et al., 2007). Another trial-design experiment reported repre-

sentation of offer-value and chosen-value in the orbitofrontal cortex (Padoa-Schioppa and Assad,

2006). While such studies do not provide direct evidence for action-value representation, they do

provide evidence for representation of closely related decision variables (but see

[O’Doherty, 2014]).

The involvement of the basal ganglia in general and the striatum in particular in operant learning,

planning and decision-making is well documented (Ding and Gold, 2010; McDonald and White,

1993; O’Doherty et al., 2004; Palminteri et al., 2012; Schultz, 2015; Tai et al., 2012; Thorn et al.,

2010; Yarom and Cohen, 2011). However, there are alternatives to the possibility that the firing

rate of striatal neurons represents action-values. First, as discussed above, learning and decision

making do not entail action-value representation. Second, it is possible that action-value is repre-

sented elsewhere in the brain. Finally, it is also possible that the striatum plays an essential role in

learning, but that the representation of decision variables there is distributed and neural activity of

single neurons could reflect a complex combination of value-related features, rather than ‘pure’ deci-

sion variables. Such complex representations are typically found in artificial neural networks

(Yamins and DiCarlo, 2016).

Action-value representation in the striatum requires further evidence
Considering the literature, both confounds have been partially acknowledged. Moreover, there have

been some attempts to address them. However, as discussed above, even when these confounds
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were acknowledged and solutions were proposed, these solutions do not prevent the erroneous

identification of action-value representation (see Figure 2—figure supplements 4, 5 and 10, Fig-

ure 5—figure supplement 1). We therefore conclude that to the best of our knowledge, all studies

that have claimed to provide direct evidence that neuronal activity in the striatum is specifically mod-

ulated by action-value were either susceptible to the temporal correlations confound

(Funamizu et al., 2015; Ito and Doya, 2009; 2015a; Ito and Doya, 2015b; Kim et al., 2013;

Kim et al., 2009; Lau and Glimcher, 2008; Samejima et al., 2005; Wang et al., 2013), or reported

results in a manner indistinguishable from policy (Cai et al., 2011; FitzGerald et al., 2012;

Funamizu et al., 2015; Guitart-Masip et al., 2012; Her et al., 2016; Kim et al., 2013; Kim et al.,

2009; Kim et al., 2012; 2007; Stalnaker et al., 2010; Wunderlich et al., 2009). Many studies pre-

sented action-value and policy representations separately, but were subject to the second confound

(Ito and Doya, 2009; 2015a; Ito and Doya, 2015b; Lau and Glimcher, 2008; Samejima et al.,

2005). Furthermore, it should be noted that not all studies investigating the relation between striatal

activity and action-value representation have reported positive results. Several studies have reported

that striatal activity is more consistent with direct-policy learning than with action-value learning

(FitzGerald et al., 2014; Li and Daw, 2011) and one noted that lesions to the dorsal striatum do

not impair action-value learning (Vo et al., 2014).

Finally, we would like to emphasize that we do not claim that there is no representation of action-

value in the striatum. Rather, our results show that special caution should be applied when relating

neural activity to reinforcement-learning related variables. Therefore, the prevailing belief that neu-

rons in the striatum represent action-values must await further tests that address the confounds dis-

cussed in this paper.

Materials and methods

Literature search
In order to thoroughly examine the finding of action-value neurons in the striatum, we conducted a

literature search to find all the different approaches used to identify action-value representation in

the striatum and see whether they are subject to at least one of the two confounds we described

here.

The key words ‘action-value’ and ‘striatum’ were searched for in Web-of-Knowledge, Pubmed

and Google Scholar, returning 43, 21 and 980 results, respectively. In the first screening stage, we

excluded all publications that did not report new experimental results (e.g., reviews and theoretical

papers), focused on other brain regions, or did not address value-representation or learning. In the

remaining publications, the abstract of the publication was read and the body of the article was

searched for ‘action-value’ and ‘striatum’. After this step, articles in which it was possible to find

description of action-value representation in the striatum were read thoroughly. The search included

PhD theses, but none were found to report new relevant data, not found in papers. We identified 22

papers that directly related neural activity in the striatum to action-values. These papers included

reports of single-unit recordings, fMRI experiments and manipulations of striatal activity.

Of these, two papers have used the term action-value to refer to the value of the chosen action

(also known as chosen-value) (Day et al., 2011; Seo et al., 2012) and therefore we do not discuss

them.

An additional study (Pasquereau et al., 2007) used the expected reward and the chosen action

as predictors of the neuronal activity and found neurons that were modulated by the expected

reward, the chosen action and their interaction. The authors did not claim that these neurons repre-

sent action-values, but it is possible that these neurons were modulated by the values of specific

actions. However, the representation of the value of the action when the action is not chosen is a

crucial part of action-value representation which differentiates it from the representation of expected

reward, and the values of the actions when they were not chosen were not analyzed in this study.

Therefore, the results of this study cannot be taken as an indication for action-value representation,

rather than other decision variables.

A second group of 11 papers did not distinguish between action-value and policy representations

(Cai et al., 2011; Funamizu et al., 2015; Her et al., 2016; Kim et al., 2013; Kim et al., 2009;

Wunderlich et al., 2009), or reported policy representation (FitzGerald et al., 2012; Guitart-
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Masip et al., 2012; Kim et al., 2012; 2007; Stalnaker et al., 2010) in the striatum and therefore

their findings do not necessarily imply action-value representation, rather than policy representation

in the striatum (see confound 2).

In two additional papers, it was shown that the activation of striatal neurons changes animals’

behavior, and the results were interpreted in the action-value framework (Lee et al., 2015;

Tai et al., 2012). However, a change in policy does not entail an action-value representation (see,

for example, Figure 5 and Figure 2—figure supplement 1). Therefore, these papers were not taken

as strong support to the striatal action-value representation hypothesis.

Finally, six papers correlated action-values, separately from other decision variables, with neuro-

nal activity in the striatum (Ito and Doya, 2009; 2015a; Ito and Doya, 2015b; Lau and Glimcher,

2008; Samejima et al., 2005; Wang et al., 2013). All of them used electrophysiological recordings

of single units in the striatum. From these papers, only one utilized an analysis which is not biased

towards identifying action-value neurons at the expense of policy and state neurons (Wang et al.,

2013). All papers used block-design experiments where action-values are temporally correlated.

Taken together, we concluded that previous reports on action-value representation in the stria-

tum could reflect the representation of other decision variables or temporal correlations in the spike

count that are not related to action-value learning.

The action-value neurons model (Figure 1, Figure 4)
To model neurons whose firing rate is modulated by an action-value, we considered neurons whose

firing rate changes according to:

f tð Þ ¼ BþK � r � Qi tð Þ� 0:5ð Þ (4)

Where f tð Þ is the firing rate in trial t, B¼ 2:5Hz is the baseline firing rate, Qi tð Þ is the action-value

associated with one of the actions i 2 1;2f g, K ¼ 2:35Hz is the maximal modulation and r denotes the

neuron-specific level of modulation, drawn from a uniform distribution, r~U �1;1½ �. The spike count

in a trial was drawn from a Poisson distribution, assuming a 1 sec-long trial.

The policy neurons model (Figure 5)
To model neurons whose firing rate is modulated by the policy, we considered neurons whose firing

rate changes according to:

f tð Þ ¼ BþK � r � Pr a tð Þ ¼ 1ð Þ� 0:5ð Þ (5)

Where f tð Þ is the firing rate in trial t, B¼ 2:5Hz is the baseline firing rate, Pr a tð Þ ¼ 1ð Þ is the proba-

bility of choosing action 1 in trial t that changes in accordance with REINFORCE (Williams, 1992)

(see also Figure 5 and corresponding text). K ¼ 3Hz is the maximal modulation and r denotes the

neuron-specific level of modulation, drawn from a uniform distribution, r~U �1;1½ �. The spike count

in a trial was drawn from a Poisson distribution, assuming a 1 sec-long trial.

The covariance neurons model (Figure 2—figure supplement 1)
In the covariance based plasticity model the decision-making network is composed of two popula-

tions of Poisson neurons: each neuron is characterized by its firing rate and the spike count of a neu-

ron in a trial (1 sec) is randomly drawn from a Poisson distribution. The chosen action corresponds to

the population that fires more spikes in a trial (Loewenstein, 2010; Loewenstein and Seung, 2006).

At the end of the trial, the firing rate of each of the neurons (in the two population) is updated

according to f t þ 1ð Þ ¼ f tð Þ þ h � R tð Þ � s tð Þ � f tð Þð Þ, where f tð Þ is the firing rate in trial t, h ¼ 0:07 is the

learning rate, R tð Þ is the reward delivered in trial t (R tð Þ 2 0; 1f g in our simulations) and s tð Þ is the

measured (realized) firing rate in that trial, that is the spike count in the trial. The initial firing rate of

all simulated neurons is 2.5Hz. The network model was tested in the operant learning task of Fig-

ure 1. A session was terminated (without further analysis) if the model was not able to choose the

better option more than 14 out of 20 consecutive times for at least 200 trials in the same block. This

occurred on 20% of the sessions. We simulated two populations of 1,000 neurons in 500 successful

sessions. Note that because on average, the empirical firing rate is equal to the true firing rate,

f tð Þ ¼ s tð Þh i, changes in the firing rate are driven, on average, by the covariance of reward and the

empirical firing rate: f tð Þh i � f t þ 1ð Þ � f tð Þh i ¼ h � cov R tð Þ; s tð Þð Þ(Loewenstein and Seung, 2006).
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The estimated action-values in Figure 2—figure supplement 1 were computed from the actions

and rewards of the covariance model by assuming the Q-learning model (Equations 1 and 2).

The motor cortex recordings (Figure 2—figure supplement 2)
The data in Figure 2—figure supplement 2A–B was recorded by Oren Peles in Eilon Vaadia’s lab. It

was recorded from one female monkey (Macaca fascicularis) at 3 years of age, using a 10 � 10

microelectrode array (Blackrock Microsystems) with 0.4 mm inter-electrode distance. The array was

implanted in the arm area of M1, under anesthesia and aseptic conditions.

Behavioral Task: The Monkey sat in a behavioral setup, awake and performing a Brain Machine

Interface (BMI) and sensorimotor combined task. Spikes and Local Field Potentials were extracted

from the raw signals of 96 electrodes. The BMI was provided through real time communication

between the data acquisition system and a custom-made software, which obtained the neural data,

analyzed it and provided the monkey with the desired visual and auditory feedback, as well as the

food reward. Each trial began with a visual cue, instructing the monkey to make a small hand move-

ment to express alertness. The monkey was conditioned to enhance the power of beta band fre-

quencies (20-30Hz) extracted from the LFP signal of 2 electrodes, receiving a visual feedback from

the BMI algorithm. When a required threshold was reached, the monkey received one of 2 visual

cues and following a delay period, had to report which of the cues it saw by pressing one of two but-

tons. Food reward and auditory feedback were delivered based on correctness of report. The dura-

tion of a trial was on average 14.2s. The inter-trial-interval was 3s following a correct trial and 5s

after error trials. The data used in this paper, consists of spiking activity of 89 neurons recorded dur-

ing the last second of inter-trial-intervals, taken from 600 consecutive trials in one recording session.

Pairwise correlations were comparable to previously reported (Cohen and Kohn, 2011), rSC ¼

0:047� 0:17 (SD), (rSC ¼ 0:037� 0:21 for pairs of neurons recorded from the same electrode).

Animal care and surgical procedures complied with the National Institutes of Health Guide for the

Care and Use of Laboratory Animals and with guidelines defined by the Institutional Committee for

Animal Care and Use at the Hebrew University.

The auditory cortex recordings (Figure 2—figure supplement 2)
The auditory cortex recordings appearing in Figure 2—figure supplement 2C–D are described in

detail in (Hershenhoren et al., 2014). In short, membrane potential was recorded intracellularly in

the auditory cortex of halothane-anesthetized rats. The data consists of 125 experimental sessions

recorded from 39 neurons. Each session consisted of 370 pure tone bursts. Tone duration was 50 ms

with 5 ms linear rise/fall ramps. In the data presented here, trials began 50 ms prior to the onset of

the tone burst. For each session, all trials were either 300 msec or 500 msec long. Trial length

remained identical throughout a session and depended on smallest interval between two tones in

each session. Spike events were identified following high pass filtering with a corner frequency of

30Hz. Local maxima that were larger than 60 times the median of the absolute deviation from the

median (MAD) were classified as spikes. The data presented here consists only of the spike counts

in each trial, rather than the full membrane potential trace.

The basal ganglia recordings (Figure 3 and Figure 2—figure supplement
3)
The basal ganglia recordings that are analyzed in Figure 3 and Figure 2—figure supplement 3 are

described in detail in (Ito and Doya, 2009). In short, rats performed a combination of a tone discrim-

ination task and a reward-based free-choice task. Extracellular voltage was recorded in the behaving

rats from the NAc and VP using an electrode bundle. Spike sorting was done using principal compo-

nent analysis. In total, 148 NAc and 66 VP neurons across 52 sessions were used for analyses (In 18

of the 70 behavioral sessions there were no neural recordings).

Estimation of action-values from choices and rewards
To imitate experimental procedures, we regressed the spike counts on estimates of the action-val-

ues, rather than the subjective action-values that underlay model behavior (to which the experimen-

talist has no direct access). For that goal, for each session, we assumed that Qi 1ð Þ ¼ 0:5 and found

the set of parameters a and b that yielded the estimated action-values that best fit the sequences of
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actions in each experiment by maximizing the likelihood of the sequence. Action-values were esti-

mated from Equation 1, using these estimated parameters and the sequence of actions and

rewards. Overall, the estimated values of the parameters a and b were comparable to the actual val-

ues used: on average, a ¼ 0:12 � 0:09 (standard deviation) and b ¼ 2:6 � 0:7 (compare with a=0.1

and b=2.5).

Exclusion of neurons
Following standard procedures (Samejima et al., 2005), a sequence of spike-counts, either simu-

lated or experimentally measured was excluded due to low firing rate if the mean spike count in all

blocks was smaller than 1. This procedure excluded 0.02% (4/20,000) of the random-walk neurons

and 0.03% (285/1,000,000) of the covariance-based plasticity neurons. Considering the auditory cor-

tex recordings, we assigned each of the 125 spike counts to 40 randomly-selected sessions. 23% of

the neural recordings (29/125) were excluded in all 40 sessions. Because blocks are defined differ-

ently in different sessions, some neural recordings were excluded only when assigned to some ses-

sions but not others. Of the remaining 96 recordings, 14% of the recordings � sessions were also

excluded. Similarly, considering the basal ganglia neurons, we assigned each of the 642 recordings

(214 � 3 phases) to 40 randomly-selected sessions. 11% (74/(214 � 3)) of the recordings were

excluded in all 40 sessions. Of the remaining 568 recordings, 9% of the recordings � sessions were

also excluded. None of the simulated action-value neurons (0/20,000) or the motor cortex neurons

(0/89) were excluded.

Statistical analyses
The computation of the t-values of the regression of the spike counts on the estimated action-values

(as in Figures 1, 2 and 5, Figure 2—figure supplement 1, – Figure 2—figure supplement 2, –Fig-

ure 2—figure supplement 3) was done using the following regression model:

s tð Þ ¼ b0þb1Q1 tð Þþb2Q2 tð Þþ � tð Þ (6)

Where s tð Þ is the spike count in trial t, Q1 tð Þ and Q2 tð Þ are the estimated action-values in trial t, � tð Þ

is the residual error in trial t and b0�2 are the regression parameters.

The computation of the t-values of the regression of the spike counts on the reward probabilities

in the trial design experiment (as in Figure 4) was done using the following regression model:

s tð Þ ¼ b0 þb1RP1 tð Þþb2RP2 tð Þþ � tð Þ (7)

Where t denotes the trial. Only the last 200 trials of the session were anlyzed. s tð Þ is the mean

spike count, RP1 tð Þ and RP2 tð Þ are the reward probabilities corresponding to action 1 or action 2,

respectively (in this experimental design RP could be 0.1,0.5 or 0.9), � tð Þ is the residual error and

b0�2 are the regression parameters.

The computation of the t-values of the regression of the spike counts on state and policy in a trial

design experiment (as in Figure 6) was done using the following regression model:

s tð Þ ¼ b0 þb1 RP1 tð ÞþRP2 tð Þ½ �þb2 RP1 tð Þ�RP2 tð Þ½ �þ � tð Þ (8)

All variables and parameters are the same as in Equation 7

All regression analyses were done using regstats in MATLAB (version 2016A).

To compare the spike counts of the example neurons, in the last 20 trials of each block

(Figure 1B; Figure 2—figure supplement 1B; Figure 2—figure supplement 2A; Figure 2—figure

supplement 2C; Figure 2A) we executed the Wilcoxon rank sum test, using ranksum in MATLAB.

All tests were two-tailed.

Significance of t-values slightly depends on session length. For the session lengths we considered,

0.05 significance bounds varied between 1.962 and 1.991. For consistency, we chose a single conser-

vative bound of 2. Similarly, 0.025 and 0.01 significance bounds were chosen to be 2.3 and 2.64,

respectively.

For all significance boundaries the false positive thresholds were computed naively, that is,

assuming the analysis is not confounded in any way and that the two predictors are not correlated

with each other. For example, assuming the false positive rate from a single t-test for a significant
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regression coefficient is P, for the standard analysis, the false positive rate for each action-value clas-

sification was defined as P � 1� Pð Þ, and the false positive rate was equal for state and policy classifi-

cation and was defined as P2=2. In Figure 6 the false positive rate computed for random-walk

neurons was P2=2 for each action-value classification, and the false positive rate computed for state

or policy neurons was P=2 for each action-value classification.

Permutation test (Figure 3)
For each action-value and random-walk neuron, we computed the t-values of the regressions of its

spike-count on estimated action-values from the sessions of Figure 1E. Because the number of trials

can affect the distribution of t-values, we only considered in our analysis the first 170 trials of the 504

sessions longer or equal to 170 trials. This number, which is approximately the median of the distri-

bution of number of trials per session, was chosen as a compromise between the number of trials

per session and number of sessions. When performing the permutation test on the basal ganglia

data we included all recordings and only the first 332 trials in each session, which is the smallest

number of trials used in a session in this dataset.

Two points are noteworthy. First, the distribution of the t-values of the regression of the spike

count of a neuron on all action-values depends on the neuron (see difference between distributions

in Figure 3A). Similarly, the distribution of the t-values of the regression of the spike counts of all

neurons on an action-value depends on the action-value (not shown). Therefore, the analysis could

be biased in favor (or against) finding action-value neurons if the number of neurons analyzed from

each session (and therefore are associated with the same action-values) differs between sessions.

Second, this analysis does not address the correlated decision variables confound.

Finally, we would like to point out that there is an alternative way of performing the permutation

test, which is applicable when the number of sessions is small, while the number of neurons recorded

in a session is large. Instead of comparing the t-values from the regression of a neuron on different

action-values, one can compare the t-values from different neurons on the same action-value. How-

ever, this method is only applicable under the assumption that the temporal correlations that are

not related to action-value in the neuronal activity are similar between sessions.

Comparison with permuted spike counts (Figure 2—figure supplement
4)
In Figure 2—figure supplement 4 we considered the experiment and analysis described in

(Kim et al., 2009). That experiment consisted of four blocks, each associated with a different pair of

reward probabilities, (0.72, 0.12), (0.12, 0.72), (0.21, 0.63) and (0.63, 0.21), appearing in a random

order, with the better option changing location with each block change. The number of trials in a

block was preset, ranging between 35 and 45 with a mean of 40 (this is unlike the experiment

described in Figure 1, in which termination of a block depended on performance).

First, we used Equations 1 and 2 to model learning behavior in this protocol. Then, we estimated

the action-values according to choice and reward sequences, as in Figure 1. These estimated action-

values were used for regression of the spike counts of the random-walk, motor cortex, auditory cor-

tex, and basal ganglia neurons in the following way: each spike count sequence was randomly

assigned to a particular pair of estimated action-values from one session. The spike count sequence

was regressed on these estimated action-values. The resultant t-values were compared with the

t-values of 1000 regressions of the spike-count, permuted within each block, on the same action-val-

ues. The p-value of this analysis was computed as the percentage of t-values from the permuted

spike-counts that were higher in absolute value than the t-value from the regression of the original

spike count. The significance boundary was set at p<0.025 (Kim et al., 2009). Neurons with at least

one significant regression coefficient (rather than exactly one significant regression coefficient) were

classified as action-value modulated neurons (Kim et al., 2009).

ANOVA tests for comparisons between blocks, excluding ‘drifting’
neurons
Following (Asaad et al., 2000) we conducted an additional analysis with repeating blocks. We simu-

lated learning behavior in the same experiment as in Figure 2—figure supplement 10. This experi-

ment is composed of 8 blocks - the 4 blocks of Figure 1, repeated twice, in random permutation.
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We restricted our analysis to the 438 sessions with 332 trials or fewer (332 trials is the shortest ses-

sion in the basal ganglia recording). Each spike count was analyzed 40 times, using 40 randomly-

assigned sessions. For each block, we restricted the analysis to the neuronal activity in the last 20 tri-

als of the block.

First, we conducted four one-way ANOVAs (using MATLAB’s anova1) to compare the neuronal

activities in blocks associated with the same action-values (e.g., the neuronal activity in the two

blocks, in which reward probabilities were (0.1,0.5)). Neurons were excluded from further analysis if

we found a significant difference in their firing rates in at least one of these comparisons (df(col-

umns)=1, df(error)=38, p<0.1). This procedure excludes from further analysis ‘drifting’ neurons,

whose spike count significantly varied in the session.

Next, for each action-value we conducted a one-way ANOVA (using MATLAB’s anova1), which

compared the neuronal activity between the two blocks in which the action-value was 0.1 and the

two blocks in which the action-value was 0.9 (df(columns)=1, df(error)=78, p<0.01). We classified

neurons as representing action-values if there was a significant difference between their firing rates

for one action-value but not for the other.

Despite the removal of ‘drifting’ neurons, this analysis yielded an erroneous classification of

action-value neurons in all datasets: random-walk neurons, 18%; motor cortex neurons, 12%; audi-

tory cortex neurons, 5%; basal ganglia neurons, 9%. This is despite the fact that the expected false

positive rate is only 2%. These results indicate that the exclusion of ‘drifting’ neurons as in

(Asaad et al., 2000) does not solve the temporal correlations confound.

Data from the motor cortex, auditory cortex, and basal ganglia was the same as in Figure 2—fig-

ure supplements 2–3. Data for random-walk included 1000 newly simulated neurons, using the

same parameters as in Figure 2 (this was done to create enough trials in each simulated spike

count).

Data and code availability
The data of the basal ganglia recordings from (Ito and Doya, 2009) is available online at https://

groups.oist.jp/ncu/data and was analyzed with permission from the authors. Motor cortex data

(recorded by Oren Peles in Eilon Vaadia’s lab) and auditory cortex data (taken from the recordings in

(Hershenhoren et al., 2014)) is available at https://github.com/lotem-elber/striatal-action-value-neu-

rons-reconsidered-codes (Elber-Dorozko and Loewenstein, 2018). The custom MATLAB scripts

used to create simulated neurons and to analyze simulated and recorded neurons are also available

at https://github.com/lotem-elber/striatal-action-value-neurons-reconsidered-codes (Elber-

Dorozko and Loewenstein, 2018; copy archived at https://github.com/elifesciences-publications/

striatal-action-value-neurons-reconsidered-codes).
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