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In several biological systems, the electrical coupling of nonoscil-
lating cells generates synchronized membrane potential oscilla-
tions. Because the isolated cell is nonoscillating and electrical
coupling tends to equalize the membrane potentials of the coupled
cells, the mechanism underlying these oscillations is unclear. Here
we present a dynamic mechanism by which the electrical coupling
of identical nonoscillating cells can generate synchronous mem-
brane potential oscillations. We demonstrate this mechanism by
constructing a biologically feasible model of electrically coupled
cells, characterized by an excitable membrane and calcium dynam-
ics. We show that strong electrical coupling in this network
generates multiple oscillatory states with different spatio-tempo-
ral patterns and discuss their possible role in the cooperative
computations performed by the system.

Many neuronal and non-neuronal systems exhibit synchro-
nized oscillatory behavior in networks of electrically cou-

pled cells. Experimental findings have revealed that in some of
these systems electrical coupling is essential for the generation
of oscillations and not only for their modulation. One example
is the subthreshold oscillations observed in neurons of the
inferior olive (IO). These neurons (when isolated) are nonoscil-
latory, and the synchronized subthreshold oscillations result
from the abundant electrical coupling between the cells (1–3).
Similarly, the oscillations observed in sympathetic preganglionic
neurons (4) and the locus coeruleus (5) were attributed to the
electrotonic coupling between the cells. Draguhn et al. (6) have
shown that the high-frequency oscillations in hippocampal slices
are independent of the chemical synapses, suppressed by gap
junction blockers, and intensified by gap junction enhancers. The
same phenomenon has been observed in non-neuronal biological
systems. Oscillations occur in the electrically coupled network of
b-pancreatic cells in the islets of Langerhans in the pancreas,
whereas isolated cells are either quiescent or oscillate at fre-
quencies that are much lower than those of the network oscil-
lations (7, 8). Membrane potential and cytosolic calcium oscil-
lations were observed in electrically coupled networks of aortic
smooth muscle cells but not in the isolated cells (9). In addition,
abnormal electrical coupling has been implicated in the gener-
ation of periodic electroencephalogram discharges in
Creutzfeldt-Jakob disease (10).

The emergence of sustained oscillations in a network where
identical nonoscillating cells are coupled seems to be paradox-
ical. If network oscillations are fully synchronized then there is
no current flowing through the electrical coupling and the whole
network behaves exactly as the single cell does [this is false when
the cells are not identical and have a different resting potential
(11, 12)]. Therefore, if the single cell does not oscillate the
network will be quiescent. Hence, sustained oscillations in such
a network must necessarily involve phase differences between
the cells. However, phase differences will be suppressed by the
electrical coupling that tends to equalize the membrane poten-
tials of the coupled cells. Thus, one would expect that if single
cells have a stable rest state it would be maintained in the
presence of electrical coupling. This intuition is not always
correct and it has been shown that moderate diffusive coupling
(a generalized form of electrical coupling) of identical nonoscil-

lating elements can destabilize the homogeneous rest state of the
system and generate oscillations (13–17). However, the gener-
ality of these examples and their relevance to electrically coupled
biological systems have been unclear, particularly because the
membrane potential of electrically coupled networks often os-
cillate in phase, whereas in their examples the coupled elements
cannot oscillate in phase. In this work we propose a general
dynamic mechanism, which explains how electrical coupling of
identical nonoscillatory cells may generate synchronized mem-
brane potential oscillations. We demonstrate the implementa-
tion of this mechanism in a biologically feasible model of
electrically coupled cells and study the spatio-temporal proper-
ties of the oscillations in large electrically coupled networks.

Mechanism for the Generation of Oscillations
Our mechanism is based on three assumptions: First, individual
cells are described by their membrane potentials and additional
‘‘internal variables,’’ e.g., the amount of activation and inacti-
vation of ionic channels or the concentrations of different ions
and proteins. Second, these internal variables have a tendency to
oscillate. Third, the interaction of the membrane potential with
the internal variables provides a negative feedback that prevents
the oscillations of these internal variables and stabilizes the cell.
Thus, any factor that will suppress this negative feedback will
expose the oscillatory nature of the internal variables. One such
factor is the membrane conductance. If this conductance is
sufficiently large the membrane potential is unable to respond to
perturbations in the internal variables. The negative feedback is
then disrupted and the internal variables will oscillate. The final
element in our theory is that electrical coupling resembles an
increase in membrane conductance. Therefore, when the elec-
trical coupling is large the resting state of the coupled cells
becomes unstable and the system will oscillate.

Model with Calcium Dynamics
We demonstrate the validity of the above mechanism by a
biophysically feasible model of electrically coupled network
consisting of identical cells that exhibit calcium dynamics. Os-
cillations in intracellular calcium concentration have been stud-
ied intensively in recent years. Goldbeter et al. (18) has proposed
that calcium-induced calcium release mechanism in which re-
lease of calcium from internal stores is triggered by cytosolic
calcium itself provides the necessary positive feedback loop for
the oscillations in the calcium concentrations in the cytoplasm
and in the internal stores. These oscillations are modeled by:

dX
dt

5 J~X, Y! 2 KzX 2 fzU;
dY
dt

5 2J~X, Y!, [1]
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where X and Y denote the calcium concentrations in the cyto-
plasm and stores, respectively. J(X,Y) describes the interaction
between the calcium concentrations; KzX is the efflux of calcium
from the cell, and U is a constant calcium mediated electrical
current. f is a conversion factor from this current to change in
calcium concentration. Details of the model are presented in the
Appendix. Fig. 1A 1 and 2 describe the oscillations in the calcium
concentration in the cytoplasm (Fig. 1 A1) and the internal stores
(Fig. 1 A2). A small perturbation (arrow) drives the system away
from the unstable fixed point and generates oscillations.

A different behavior emerges if the calcium dynamics interacts
with the membrane potential (V). This interaction is mediated
via voltage-dependent calcium current, ICa(V), and a (cytosolic)
calcium-dependent potassium current, IK_Ca(X,V). Thus, the
cell’s dynamics is of the form:

C
dV
dt

5 2~ICa 1 IK_Ca 1 Ileak!;

dX
dt

5 J~X, Y! 2 KzX 2 fzICa~V!;
dY
dt

5 2 J~X, Y!. [2]

The upper part of Eq. 2 describes the current balance equation
in which an additional passive leak current, Ileak(V), was in-
cluded. The equations for the calcium concentrations X,Y are as
in Eq. 1, with the voltage-dependent calcium current ICa(V)
substituting the constant calcium current U. Details of the model
appear in the Appendix. The behavior of this system is described
in Fig. 1B 1 and 2. In this case, even a large perturbation (arrow)
does not induce oscillatory behavior either in the cytosolic
calcium (Fig. 1B1) or the membrane potential (Fig. 1B2). The
absence of the oscillations is due to the activation of IK_Ca that
hyperpolarizes the membrane potential, which in turn deacti-
vates the calcium current and decreases the calcium influx into
the cell.

The ability of the membrane potential to prevent the oscilla-
tions depends on the negative feedback that it exerts on the
calcium oscillations. A detailed analysis of the effect of adding
a shunt conductance (a passive conductance with a reversal
potential that is equal to the resting potential value) with
strength grest shows that for small values of grest the rest state is
stable. Increasing grest beyond a critical value gc destabilizes the
rest state and gives rise to stable oscillations in a scenario known
as normal Hopf bifurcation (19). This is illustrated in Fig. 1C1
for the cytosolic calcium and in Fig. 1C2 for the membrane
potential. In this regime of grest, a small increase in the cytosolic
calcium (arrow) increases IK_Ca, as before, but the current that
will f low through the extra large conductance will generate a
smaller change in the membrane potential (compare Fig. 1 C2 to
B2). Thus the resultant decrease in calcium influx will be small
and insufficient to prevent the calcium oscillations. These oscil-
lations will induce membrane potential oscillations via IK_Ca.
Thus, the addition of a large shunt conductance reduces the
effect of the cytosolic calcium on the membrane potential,
suppresses the efficacy of the negative feedback loop, and
enables oscillations.

Our hypothesis about single cell properties yields a surprising
experimental prediction. Because voltage clamp is in fact an
addition of a large conductance with a reversal potential that is
equal to the holding potential, we predict that voltage clamping
the cell to its resting potential value will generate oscillations of
the internal variables as shown in Fig. 2. When the cell is clamped
to its resting potential value (thick line in Fig. 2 A) a small
perturbation to the cytosolic calcium concentration (first arrow)
leads to cytosolic calcium oscillations (Fig. 2B) and consequently
due to the calcium-dependent potassium current to oscillations
in the current needed to maintain the membrane potential (Fig.
2C). When the clamp is terminated the calcium oscillations lead,
as expected, to damped membrane potential oscillations (Fig.
2A). Under nonclamped conditions the same cytosolic calcium
perturbation (second arrow) has almost no effect on either the
calcium concentrations or the membrane potential.

The Effect of Electrical Coupling
Electrical coupling is modeled by adding a coupling current
Icoupling to the current balance equation for each cell, thus the
dynamics of the membrane potential of cell i is:

C
dV i

dt
5 2~ICa

i 1 IK_Ca
i 1 Ileak

i 1 Icoupling
i !;

Icoupling
i 5 O

j

gij~V i 2 V j!, [3]

where the sum is over all of the cells in the network and gij is the
electrical coupling between the cells i and j.

As was shown in the case of the reaction-diffusion equation
(16), electrical coupling resembles an increase in the membrane
conductance. This can be easily seen if we examine the effect of
coupling on two identical nonoscillating cells both at their resting

Fig. 1. Calcium and voltage oscillations in the modeled cell. (A) In a nonex-
citable cell, the dynamics of calcium concentrations has an unstable fixed
point. A small perturbation in the cytosolic calcium concentration (an increase
by 1023 mM), denoted by an arrow, drives the cell away from the fixed point
into stable oscillations of both the cytosolic (A1) and the stores (A2) calcium
concentrations. The constant calcium current U (see Eq. 1 and the Appendix)
is taken to be U 5 2184 nAmpycm2. (B) In an excitable cell (see Eq. 2 and the
Appendix), the membrane stabilizes the fixed point. A much larger perturba-
tion (an increase of the cytosolic calcium concentration by 0.1 mM), denoted
by an arrow, generates one spike in calcium concentration but the system
converges back to the stable fixed point. An increase in the shunt conductance
(an extra conductance of 2z104 mSycm2) destabilizes the fixed point such that
even a small perturbation (same as in A), denoted by an arrow, leads to
cytosolic calcium oscillations (C1) and consequently to membrane potential
oscillations (C2). ICa at the fixed point is equal to U (2184 nAmpycm2). The
unstable fixed points in A and C are not realizable experimentally but serve to
demonstrate the dynamical principle.
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potential value. Perturbation of the membrane potential of one
of the cells will generate a current flow from that cell to the other
cell. Because the second cell is initially at the resting potential
value, the current flow is proportional to the difference between
the perturbed membrane potential and the resting membrane
potential. Thus, shortly after the perturbation the cell behaves as
if it was an isolated cell with an additional leak current whose
reversal potential is equal to the resting potential value. Con-
sequently, the addition of a sufficiently large electrical coupling
between two cells of this type leads to oscillations as illustrated
in Fig. 3, similar to the effect of increasing the membrane
conductance in the isolated cell. Analysis of the effect of adding
an electrical coupling with strength g between the two identical
cells, which are described by Eqs. 2 and 3, shows that for small
values of g the rest state is stable. Increasing g beyond a critical
value (which equals to 0.5 gc) destabilizes the rest state and gives
rise to oscillations via a Hopf bifurcation. Fig. 3 shows that in
contrast to the antiphase oscillations of the cytosolic calcium
concentrations of the two cells (Fig. 3A) their membrane po-
tentials oscillate in an almost in-phase fashion (Fig. 3B). In
addition, the frequency of the calcium oscillations is half that of
the membrane potential oscillations.

The Limit of Strong Electrical Coupling
To understand the reasons for the behavior shown in Fig. 3 it is
useful to consider the limit of strong electrical coupling, which

means that the electrical coupling between the two identical cells
is much stronger than the other conductances in the system. In
this case, the electrical coupling forces the membrane potentials
of the coupled cells to be close to each other at all times. The
small difference in their value multiplied by a large coupling
conductance g generates a significant current flowing through
the gap junction between them. This current has to be compen-
sated by a substantial difference in the other currents that flow
into the cells, in our case the calcium current. Hence the calcium
concentrations of the two cells oscillate out of phase. How do
these concentrations oscillate out of phase in the presence of
in-phase potentials? To understand the mechanism at work let
us sum the equations describing the dynamics of the membrane
potentials of the two cells corresponding to Eq. 3 with i 5 1,2.
Because Icoupling of the two cells is identical in magnitude but
different in sign it cancels out when the two equations are
summed, so that

C
dV
dt

5 2ICa~V ! 1 Ileak~V ! 1
1
2 O

i 5 1

2

IK_Ca~X i, V !, [4]

where we have used the fact that V1 ' V2 5 V. The dynamics of
the calcium variables are given by:

dX i

dt
5 J~X i, Y i! 2 KzX i 2 fzICa~V!;

dY i

dt
5 2J~X i, Y i!, i 5 1, 2.

[5]

The dynamic equations of the calcium variables of cell 1 (Eq. 5
with i 5 1) are the same as that of cell 2 (Eq. 5 with i 5 2),
because the cells are identical and are forced by (nearly) the
same potential oscillations. Nevertheless the trajectories of (X 1,
Y 1) and (X 2, Y 2) are not identical as is evident from Fig. 3A. This
is possible because the locking of the calcium variables to the
oscillating potential is not 1:1 but essentially 2:1, allowing for
(X 1, Y 1) and (X 2, Y 2) to be separated from each other by 180°
of phase. Eq. 4 implies that in this case the frequency of the
potential is double the frequency of the calcium variables.

Patterns of Oscillations in Electrically Coupled Networks
Our mechanism for the generation of oscillations is general and
can be applied to networks with large numbers of cells and
arbitrary architecture. For moderate coupling strength, the
shape of the oscillations and the phase difference between the
cells depends on the architecture of the coupling and their
strengths. Here we concentrate on the cases of strong coupling,

Fig. 2. Calcium oscillations are generated by voltage clamping. A nonoscil-
lating cell (parameters as in Fig. 1B) is voltage-clamped to its resting potential
value for the first 20 sec (black bar in A). (A) The membrane potential. (B) The
cytosolic calcium concentration. (C) The voltage clamp current. At time t 5 2
(denoted by an arrow), a small perturbation of the cytosolic calcium concen-
tration (same as in Fig. 1 A and C) drives the cell away from the unstable fixed
point into stable oscillations of the cytosolic calcium concentration. These
oscillations are reflected in the calcium-dependent potassium current, result-
ing in oscillations in the clamping current (C). Discontinuing the voltage clamp
generates damped voltage oscillations (A) and prevents the calcium oscilla-
tions (B). Without the voltage clamping, the same cytosolic calcium pertur-
bation (second arrow) has almost no effect on the cell dynamics. The unstable
fixed point (at times t , 2) is not realizable experimentally but serves to
demonstrate the dynamical principle.

Fig. 3. Voltage and calcium oscillation in a network of two electrically
coupled cells. Parameters of the cells are the same as in Fig. 1B, and coupling
strength is 104 mSycm2. (A) The time course of the cytosolic calcium concen-
tration in the two cells. (B) Membrane potential of the two cells. Note that
although the membrane potentials of both cells are very similar, the calcium
oscillations of the two cells are out of phase and locked in a 1:2 manner to the
membrane potential oscillations. A spike like in calcium concentration in one
cell generates a strong hyperpolarization in that cell, and consequently a
smaller hyperpolarization in the coupled cell.
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where general features can be extracted that are independent of
the number of cells or the specific architecture.

The equations that describe the dynamics of the network in the
limit of strong coupling are similar to that of Eqs. 4 and 5 but with
i running from 1 to N, N being the number of neurons in the
network. The calcium variables of the different cells all obey the
same dynamic equation and ‘‘see’’ (nearly) the same membrane
potential. Therefore, the principle that calcium oscillates at
lower frequency than the membrane potential and that the
oscillations of the calcium concentrations are not all synchro-
nized in phase applies in a general network. However, in a large
network different realizations of out-of-phase calcium oscilla-
tions are possible and therefore the network possesses many
stable states. The stable state in which the system will eventually
settle is determined by the initial conditions. An example of this
phenomenon is shown in Fig. 4 for a network of six coupled cells.
Fig. 4A1 shows that the network settles in a state in which all six
cells show in phase almost identical membrane potential oscil-
lations. The calcium concentrations (Fig. 4A2), on the other
hand, exhibit a different behavior. In each cell the frequency of
the calcium oscillations is only one-sixth that of the voltage
oscillations and they are out of phase with respect to each other.
Hence, different cells ‘‘choose’’ different phases of locking to the
membrane potential.

The same network can settle in another stable state (Fig. 4B),
where the calcium oscillations of cells 2 and 4 (second and fourth
traces in Fig. 4B2) are in phase but differ in phase from those of
the other four cells. This structure is reflected in the nonhar-
monic shape of the membrane potential oscillations of all of the
cells (Fig. 4B1). Thus the stable states of the network differ not
only in the shape of the voltage oscillations but also in the
grouping of the cells according to their in-phase calcium oscil-
lations. We define a group of cells whose calcium oscillates in
phase as a cluster.

One can induce transitions between the different stable states
of the network by a transient cytosolic calcium perturbation to
one of the cells. As demonstrated in Fig. 4C, the network is
initially in the state shown in Fig. 4B. The same perturbation can
either transform the network to the state described in Fig. 4A
(first arrow), have only transient effect on the network (second
arrow), revert to state in which the membrane potential oscil-
lations are similar to the ones in Fig. 4B but now with the calcium
concentrations of cells 3 and 5 in phase (third arrow), or
transform the network to yet another state (not shown).

We have simulated large networks of up to 500 cells with the
above calcium dynamics in the limit of strong coupling. We have
found that typically the network forms 5–6 clusters whose sizes
depend on the initial conditions. Fig. 5 shows an example of a
strongly coupled network of 500 cells. The oscillations of the
cytosolic calcium concentration (shown in Fig. 5B for 25 ran-
domly chosen cells) show clear clustering into five clusters. The
membrane potential shows different polarizations (Fig. 5A).
Each of these peaks corresponds to a calcium spike that occurs
in one of the clusters, and the size of this hyperpolarization
corresponds to the size of the cluster. Thus the detailed shape of
the common oscillating potential bears a signature of the clus-
tering structure of the calcium variables.

Discussion
In this study we have demonstrated a possible solution to the
seemingly paradoxical observation that electrical coupling of
identical nonoscillating cells can generate synchronous mem-
brane potential oscillations. The basic concept is that the inter-
action of the membrane potential with the internal variables
suppresses the tendency of the latter to oscillate. Electrical
coupling effectively acts as a shunt conductance and thus
diminishes the suppression capacity of the potential, thereby
giving rise to oscillations. We have realized our concept in a

biologically feasible model in which calcium dynamics plays the
role of internal variables.

Another model in which electrical coupling between identical
nonoscillator cells generates oscillations has been previously
proposed by Sherman and Rinzel (20). In that model, in addition
to a stable rest state, stable oscillations of the membrane
potentials exist in a restricted range of values of the electrical
coupling. A continuum model of population dynamics with one
diffusing species has been shown to undergo a Hopf bifurcation

Fig. 4. Multiple stable states in a network of six strongly coupled cells. All
cells in the network are coupled to all of the other cells. The parameters of the
isolated cell are as in Fig. 1B. The six consecutive traces in each plot (from top
to bottom) represent the activity in cells 1–6, respectively. (A) A stable state of
the network, where the cytosolic calcium concentrations of all six cells are not
in phase. The frequency of the membrane potential oscillations (A1) is six times
that of the cytosolic calcium oscillations (A2). (B) Another stable state of this
network, where the calcium concentrations of cells 2 and 4 are in phase, but
are not in phase with the other cells (B2). This is reflected in the shape of the
membrane potential oscillations (B1). Note that hyperpolarization resulted
from the calcium spike of cells 2 and 4 is about twice as large as that of the
other cells. (C) Transient stimuli can shift the network between stable states.
The membrane potential of cell 1 is shown. Each arrow represents a transient
increase in the cytosolic calcium concentration of the first cell (0.1 mM). Note
that the same transient stimulus shifts the network from one stable state
(same as in B) to another stable state (same as in A; first arrow), makes no
sustained change in the network state (second arrow), or reverts to a stable
state similar to A but now the calcium concentrations of cells 3 and 5 are in
phase (third arrow). The coupling strengths between cells i and j were taken
to be gij 5 (4 1 2zi 1 2zj)z103 mSycm. For reasons of clarity the cells in the traces
were ordered from top to bottom according to i 5 (2,6,5,3,4,1).
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to oscillatory state (16). Both of these models predict the
presence of antiphase oscillations in the coupled variables in a
restricted range of coupling values. In contrast, the oscillations
in the present model appear for arbitrary large electrical cou-
pling. As we have explained above, this implies that the mem-
brane potentials of the different cells may be nearly in phase.
Moreover, the validity of this mechanism in a given network can
be determined by investigating the dynamics of the single cells
that comprise the network, in particular by testing whether the
addition of a sufficiently large shunt conductance will generate
oscillation in the isolated cell.

A model for the oscillations in the IO, which relies on
heterogeneity in the cells’ conductance, has been investigated by
Manor et al. (11). In that model, although the isolated cells do
not oscillate, when they are strongly coupled they behave
similarly to an isolated cell with average properties. This average
cell is oscillatory. Thus similar to our model, oscillations in this
case are present even for arbitrarily strong coupling. However,
in the model of Manor et al., the internal variables lock in a
unique fashion to the oscillating potential and therefore they
oscillate in phase. In contrast, our mechanism does not rely on
heterogeneity and on the existence of an oscillatory average cell.
Instead, the oscillations emerge from the different phases in
which the calcium variables of different cells lock to the common
potential (Eq. 5). Another consequence of our mechanism is the
multiplicity of stable oscillatory states in networks with strong
electrical coupling.

The spontaneous organization of large homogeneous net-
works into clusters of synchronized oscillators as shown in Fig.
5 is similar to the behavior of certain neuronal networks with
global inhibition (21, 22). The analogy between our system and

global inhibition is transparent in light of Eqs. 4 and 5. These
equations indicate that in the presence of strong electrical
coupling the membrane potential acts as a global inhibitor on the
local internal variables (because its feedback effect on is nega-
tive). This global negative feedback suppresses synchronized
oscillations but is unable to suppress out-of-phase oscillations.

It is important to emphasize that although we have assumed
in our model that the cells are identical, it is robust to the
introduction of a weak heterogeneity, because it will not destroy
the oscillatory nature of the internal variables and the negative
feedback that the different cells exert on each other via the
membrane potential.

The fact that our network has several stable states of voltage
behavior, each of which can be generated by many different time
courses of the internal variables, endows the system with unique
properties that have significant functional consequences. Cal-
cium, for example, plays a crucial role in many neuronal pro-
cesses such as synaptic transmission and plasticity (23). A
network of cells that exhibit similar voltage behavior and dif-
ferent calcium distribution may induce spatially segregated
changes in membrane and synaptic conductance. Thus the
electrical coupling may give rise to a rich repertoire of oscillatory
states, which endows the system with interesting capabilities for
processing and representing different stimuli.

The analysis presented in this work can be applied also to
single cells that contain localized regions of high densities of
calcium channels in their dendrites (24). Each of these cells can
be viewed as a network of excitable elements coupled electrically
by the dendrites. According to our theory this coupling may give
rise to oscillations in the membrane potential and calcium
concentrations of the cell. Furthermore, if the coupling between
the active zones is strong the cell will have multiple stable
oscillating states. In each of these states the membrane potential
across the cell will be nearly uniform. However, the active zones
will group into clusters where the oscillatory calcium concen-
trations of zones belonging to different clusters differ in their
phases. The role of dendritic coupling in the calcium dynamics
of single cells has been recently studied.¶

Several biological systems including the IO, the locus coer-
uleus, the b-pancreatic cells, and the aortic smooth muscle cells
exhibit oscillations, which depend in some way on electrical
coupling. The proposed mechanism may be applicable to some
of these systems. However, in general, the origin of the instability
of the internal variables may not necessarily be related to calcium
dynamics. Elsewhere we have realized the proposed dynamic
mechanism in a network of two-compartment neurons. One
compartment is an excitable soma whose parameters play the
role of the internal variables and a passive dendrite whose
membrane potential plays the role of V. The isolated soma of the
neurons is oscillatory but its interaction with the dendrite
dampens these oscillations, yielding nonoscillating cells. Elec-
trical coupling via dendro-dendritic gap-junction in this model
leads to sustained oscillations via the same mechanism described
here.i This may provide an alternative model for the oscillations
in the IO.

Regardless of the specific realization of the internal variables,
our proposed mechanism emphasizes the role of electrical
coupling in exposing the inherent instability. Traditionally,
electrotonic coupling was regarded as a nonmodifiable commu-
nications path, which generates inflexible networks. However, in
the seventies, Llinas et al. (25–27) suggested that the effective
electrical coupling, and the synchrony between IO cells could be
modulated by GABAergic synapses from the deep cerebellar

¶Medvedev, G. S., Wilson, C. J., Callaway, J. C. & Kopell, N. (1999) Soc. Neurosci. Abstr. 25,
1927.

iLoewenstein, J., Sompolinsky, H. & Yarom, Y. (1999) Soc. Neurosci. Abstr. 29, 915.

Fig. 5. Oscillations in a large network of strongly coupled cells. Parameters
of the isolated cells are as in Fig. 1B. The network consists of 500 cells and
coupling is taken in the limit of very large coupling strength (i.e., identical
membrane potentials as in Eqs. 4 and 5). (A) The voltage oscillations of a cell
in the network. (B) Cytosolic calcium oscillations in 25 randomly chosen cells
(for reasons of clarity the cells were ordered). Note that a hyperpolarization
in the membrane potential follows an increase in the cytosolic calcium con-
centrations of some cells and the magnitude of the hyperpolarization de-
pends on the number of cells in which there was simultaneous increase in the
cytosolic calcium concentration. These hyperpolarizations result from the
calcium-dependent potassium current.

Loewenstein et al. PNAS u July 3, 2001 u vol. 98 u no. 14 u 8099

N
EU

RO
BI

O
LO

G
Y



nuclei. The present work suggests that by changing the effective
strength of the electrical coupling the cerebellum also can
initiate and terminate the sub threshold oscillations.

A growing number of studies in recent years have demon-
strated that electrical coupling in the central nervous system is
far more common than was previously considered. It has been
described in cortical (28) and cerebellar inhibitory neurons (29)
as well as in the hippocampus (6) and locus coeruleus (5). In all
these studies it usually has been assumed that electrotonic
coupling serves as a synchronizing device, or as a fast excitatory
pathway. In this work we suggest that in addition, electrical
coupling can serve as a generator of oscillatory activity. Al-
though one would expect that oscillatory activity that is associ-
ated with electrotonic coupling will be rather homogeneous, we
showed that it does not decrease the flexibility of the network.
On the contrary it furnishes it with a wide range of dynamic
features.

Appendix: The Calcium Dynamics Cell Model
The calcium dynamics in Eqs. 1 and 2 is: J(X,Y) 5 2V2 1
(V3 1 Ks) z Y with

V2 5 VM2

~X 2!

~K2!
2 1 X2;V3 5 VM3

~K4X!3

~X 1 K4!
6 ;

Ks 5 1 sec21; VM2 5 50 mMysec; K2 5 0.2 mM; VM3 5 600 sec21;
K4 5 0.69 mM. The parameters of J and K were taken from ref.
30 assuming that the inositol triphosphate concentration is
constant and equal to 0.14 mM. The calcium efflux constant, K 5

10 sec21 and f 5 9.221z1023 mMcm2y(secznA) is the conversion
factor from calcium current to change in cytosolic calcium
concentration. For an appropriate regime of values of X and Y,
the derivative of J(X,Y) with respect to X is positive, implying that
X exhibits a positive feedback loop mediated by the calcium-
induced calcium release. This positive feedback is terminated
when the stores are depleted and the excess calcium is pumped
out of the cell. The influx of calcium into the cell via voltage-
dependent calcium current restores the necessary calcium for the
next cycle. The currents in Eq. 2 are: Ileak 5 gleak(V 2 Vleak); ICa
5 gCam`

3h`(V 2 VCa); IK_Ca 5 gK_Cas(V 2 VK) with

m` 5
1

1 1 e2~V 2 Vm!yTm ; h` 5
1

1 1 e~V 2 Vh!yTh ;

s 5
1
2
$1 1 tanh@b~X 2 X*!#%;

with the parameters: Vleak 5 255 mV; gleak 5 2,701 mSycm2; Vm
5 261 mV; Tm 5 4.2 mV; Vh 5 285.5 mV; Th 5 8.6 mV; VCa
5 120 mV; gCa 5 100 mSycm2; b 5 2.5 mM21; X* 5 0.4334 mM;
VK 5 285 mV; gK_Ca 5 2,000 mSycm2, C 5 1 mFycm2. The
parameters of ICa were taken from in vitro measurements in the
IO (11), assuming an instantaneous inactivation term.
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