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Abstract
Video prediction models often combine three com-
ponents: an encoder from pixel space to a small
latent space, a latent space prediction model, and
a generative model back to pixel space. However,
the large and unpredictable pixel space makes
training such models difficult, requiring many
training examples. We argue that finding a predic-
tive latent variable and using it to evaluate the con-
sistency of a future image enables data-efficient
predictions because it precludes the necessity of
a generative model training. To demonstrate it,
we created sequence completion intelligence tests
in which the task is to identify a predictably-
changing feature in a sequence of images and
use this prediction to select the subsequent im-
age. We show that a one-dimensional Markov
Contrastive Predictive Coding (M-CPC1D) model
solves these tests efficiently, with only five exam-
ples. Finally, we demonstrate the usefulness of
M-CPC1D in solving two tasks without prior train-
ing: anomaly detection and stochastic movement
video prediction.

1. Introduction
Changes in the world are often dominated by the dynamics
of a relatively small number of latent variables. Identify-
ing these variables is useful for making predictions. For
example, in video prediction, the task is to predict an image
from a sequence of its preceding images. To that goal, video
prediction models often assume a small number of latent
variables and learn to predict them (Liu et al., 2021). How-
ever, the learning of the mapping of these latent variables to
the pixel space requires the training of a generative model,
which requires a large number of examples. The number of
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Figure 1. A sequential intelligence test. The images along the
sequence become darker. The rest of their characterizing features
are random. Only the 4th choice adheres to the shading rule.

examples can be somewhat reduced if the expressivity of the
latent encoder is limited (Kumar et al., 2019), or if a simple
structure is imposed on the latent variables (Minderer et al.,
2019; Kim et al., 2019; Yang et al., 2018).

Our focus here is on a different class of problems, in which
the task is to learn a predictive latent model only and use it
to evaluate the consistency of a given image with its preced-
ing images. Solving this problem enables the identification
of incongruent images, or as we focus in this paper, the
selection of the predictable or congruent image from a set of
alternative choices, rather than creating it. We argue that be-
cause no generative model training is needed, this problem
can be solved using only a small number of examples. In
humans, the ability to learn predictive latent variables and
use them to select congruent predictions is quantified with
intelligence tests, whose score is highly correlated with suc-
cess in the job market and the academia (Sternberg, 1977;
Raven et al., 1998; Lohman, 2000; Kaplan & Saccuzzo,
2009; Siebers et al., 2015). Therefore, we use the frame-
work of intelligence tests to demonstrate the data-efficiency
of a latent-guided prediction by selection.

Consider the intelligence test depicted in Fig. 1: five ordered
images are presented. The next image, the sixth, is miss-
ing. Each image is characterized by features: the number of
objects, their color, shape, size, and positions. The images
were constructed such that one of the features predictably
changes along the sequence according to a simple determin-
istic rule, while the rest of the features are either constant
or randomly changing. Because of the random nature of
some of the features, predicting the sixth image exactly is
impossible. However remarkably, humans are able to iden-
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tify the image which is congruent with the sequence, out of
the four alternative choices depicted in Fig. 1, by finding
the predictably changing feature without prior training.

In this paper, we use a Contrastive Predictive Coding (CPC)
algorithm (Oord et al., 2018) which was shown useful
for finding predictive latent variables (Anand et al., 2019;
Henaff, 2020; Yan et al., 2020). This self-supervised al-
gorithm optimizes an infoNCE loss in which consecutive
inputs in a sequence are regarded as positive examples and
non-consecutive inputs as negative examples. Usually, to
get accurate data representations, CPC models are trained
over large datasets. However, we hypothesized that the se-
lection task required for solving intelligence tests such as
the one depicted in Fig. 1 are solvable by inaccurate data
representations and therefore that a CPC algorithm can solve
them without any prior training. This is an extreme example
of a few-shot learning in which the training is done using
only the five images of the test, with zero training episodes.

2. Intelligence Tests
Inspired by previous intelligence tests generating algorithms
(Wang & Su, 2015; Barrett et al., 2018), sequences of K
gray-scale images xj (e.g in Fig. 2) were generated in the
following way: each image included 1-9 identical objects
arranged on a 3×3 grid. An image was characterized by a
low dimensional vector of features, fj where f ij denotes the
value of feature i in image j. We used the following five
features: the number of objects in an image (possible values:
1 to 9), their shade (6 linearly distributed gray scale values),
the shapes (circle, triangle, square, star, hexagon), their size
(6 linearly distributed values for the shapes’ enclosing circle
circumference), and positions (a vector of grid positions
that was used to place the shapes in order). The image xj
was constructed according to its characterizing features by
a non-linear and complex generative function xj = g (fj)

1.

One of the features fp predictably changed along the se-
quence according to a simple deterministic rule fpj+1 =
u(fpj ) while the other features were either constant over the
images or changed randomly (values were i.i.d). We refer
to the randomly-changing features as distractors and their
number is considered a measure of the difficulty of the test.
After observing a sequence of K images, the agent’s task
was to select the correct K + 1th image from a set of n
optional choice images that were generated using the same
generative function g from the feature space. In the correct
choice, fp followed the deterministic rule fpK+1 = u(fpK),
whereas in the incorrect choices it did not follow that rule
and was instead randomly chosen from the remaining pos-
sible values. The features that were constant or randomly
changing in the sequence were also constant or changed

1Code for generating intelligence tests available on request.

A Predictive Feature (PF): color. Distractors: none.

B PF: size. Distractors: color.

C PF: number. Distractors: color, size, shape, positions.

D PF: shape. Distractors: color, size, number, positions.

Figure 2. Sequences with various predictive, constant and random
features. We call the random features distractors, and their number
determines an intelligence test’s difficulty.

randomly in all four choices.

3. Markov 1D Contrastive Predictive Coding
Our main challenge in solving the intelligence tests is to find
a latent variable that changes in a simple deterministic way
along the test’s five images sequence. Consider an encoder
function Z, a predictor function T , two images xa and xb
and the prediction error

εa,b (Z, T ) =

(
T
(
Z(xa)

)
− Z(xb)

)2

(1)

By construction, for the true encoder and predictor functions
Z∗ = g−1 and T ∗ = u, εa,b (Z∗, T ∗) = 0 if a and b are
two consecutive images (b = a+ 1), and εa,b (Z∗, T ∗) 6= 0
otherwise.

The challenge is that Z∗ and T ∗ are unknown. However,
given a sequence of K ordered images, we can approximate
Z∗ and T ∗ by finding Z and T that minimize the predic-
tion error for consecutive images and maximize it for the
non-consecutive ones. Formally, we define a contrastive
infoNCE loss based on those prediction errors

L = − 1

K − 1

K−1∑
j=1

log
e−εj,j+1∑
j′ e

−εj,j′
(2)
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and find Z and T that minimize it.

The model’s encoder Z and predictor T are implemented
by deep neural networks. Because the true predictor is
one dimensional, we used a convolutional network for the
encoder Z(x) from the 100×100 pixel space to a single
neuron; For the predictor, T (Z(x)), we used a residual
network T (Z(x)) = Z(x) + ∆T (Z(x)) where ∆T is a
fully-connected network. This variant of the CPC algorithm
predicts a 1D latent variable based only on its most recent
value. Thus, we marked it as M-CPC1D.

4. Results
4.1. Solving Tests Without Prior Training

To quantify the performance of M-CPC1D in solving in-
telligence tests without prior training, we applied it on a
multitude of intelligence tests. For brevity, we focused in
the main text on a specific predictive feature, the size of the
objects, which increased monotonically throughout. Tests
in which other features changed predictably are shown in
the supplementary material. The 4 remaining features were
either constant or randomly changing, resulting in a total of
24 = 16 test conditions (Fig. 3).

Each intelligence test was solved in the following way: First,
we randomly initialized the networks corresponding to Z
and T . We then updated these networks’ weights with a
single optimization step in the direction of minimizing the
loss function (Eq. 2)2. After the optimization step, we
selected the choice image that had the lowest prediction
error out of the four choices as the answer of this intelligence
test.

Remarkably, we found that training with only the K = 5
images that are given within the tests is sufficient for solving
easy tests, as well as for achieving a substantially higher
than chance performance in the more difficult tests (Fig. 3).

4.2. Meta-Learning Sample Complexity

To evaluate the potential benefit of prior training and obtain
the sample complexity of M-CPC1D, we tested the perfor-
mance of models whose parameters are learned, rather than
chosen randomly. Specifically, we performed an episode-
based meta-learning, in which prior to performing a certain
few-shot learning task, a model is trained on episodes (one
optimization step per episode) that are random realizations
of the same few-shot learning task (Thrun & Pratt, 1998;
Sung et al., 2018). This was done for the 16 test conditions
of Fig. 3.

2We found that a single gradient step achieved comparable
results to a full minimization of the loss with more steps. We used
the RMSprop optimizer with learning rate η = 4 · 10−4.

Figure 3. Performance Without Prior Training. Accuracy in 16
test conditions in which the predictive feature was the objects size
that increased along the sequences. The remaining 4 features were
either distractors (marked according to the legend) or constant
(not marked). Performance was evaluated using 500 randomly-
generated intelligence tests (see section 2 for details). Error bars
correspond to 95% confidence intervals. The black line and its
shade are the average accuracy per difficulty and the corresponding
standard deviation.

As depicted in Fig. 4, meta-learning improved the per-
formance of M-CPC1D to above 85% accuracy in all test
conditions within several hundreds of training episodes.

4.3. Cross-Domain Generalization

Meta-learning algorithms often overfit to the tasks they were
trained on, impairing their cross-domain generalization (Li
et al., 2017; Yin et al., 2020; Rajendran et al., 2020). To
evaluate the cross-domain generalization properties of M-
CPC1D we extensively trained (1000 episodes) networks
on intelligence tests with certain feature rules, and then
tested them with intelligence tests that were characterized
by other feature rules. Specifically, we trained and tested the
networks using intelligence tests in which the predictive fea-
ture was either the size or the color of the objects (increasing
monotonically), and the rest of the features could either be
all constant (easy condition), or all distracting (hard condi-
tion). In total, we considered 4 types of intelligence tests:
size-easy, size-hard, color-easy, color-hard; and we crossed
between them in the training and final-evaluation stages of
the model.

The emerging picture is interesting (Fig. 5). Within the same
predictive feature, we find that training using easy episodes
is more effective than training with hard ones. Interestingly,
after training with the easy episodes, networks’ performance
in the hard tests was comparable to their performance in the
easy ones. These results suggest that the difference in the
asymptote performances in Fig. 4 in the different conditions
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Figure 4. Meta-Learning Sample Complexity. For each of the
16 test conditions in Fig. 3, we trained the model using 1000
training episodes. Performance was evaluated every 50 training
episodes. Accuracy measure corresponds to the average perfor-
mance of 50 randomly-initialized models, each evaluated using
500 intelligence tests that were randomly generated from the same
test condition. For clarity, performance is also averaged over test
conditions that share the same number of distractors (thus, for ex-
ample, 0 distractors correspond to a single test condition whereas
2 distractors depict the average over 6 test conditions).

may reflects differences in the training episodes rather than
differences in the difficulty of the tests. In other words, after
training, the networks can solve even the most difficult tests
if these tests are preceded by training using easy episodes.

When considering training and testing on different predic-
tive features, the picture is more complex. Training with
easy episodes of one feature rule improved performance
in hard tests of the other feature rule, but was detrimental
to performance when the tests of the other rule were easy.
Training with hard episodes, on the other hand, was catas-
trophic, bringing performance in both easy and hard tests of
the other predictive feature to chance levels.

4.4. Conclusion

Our main result is that M-CPC1D can successfully solve
intelligence tests without any prior training. Moreover, train-
ing the model by meta-learning can either improve or impair
the performance of the model, depending on the feature
alignment between the training and testing domains. These
results indicate that zero-episode few-shot training can out-
perform trained models in environments in which domain
shifts are expected, demonstrating the potential benefit of
few-shot learning without any prior training.
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Figure 5. Cross-Domain Generalization. Randomly initiated net-
works Z and T were trained for 1000 episodes on a certain intelli-
gence test type, and then evaluated over the 4 intelligence test types
with 500 tests each. The right column presents the performance
without prior training for comparison. Accuracies presented are
averaged over 50 experiments and shown with 95% confidence
intervals.

5. Applications
5.1. Stochastic Movement Prediction

To demonstrate the usefulness of M-CPC1D, we applied it
to a video prediction task. The video we chose to predict is
similar to those of the Stochastic Movement (SM) dataset
(Babaeizadeh et al., 2017), in which a random shape moves
in a random direction from the middle of the frame to one
of its sides. It is difficult to train effective deterministic
video prediction models in stochastic environments such as
the SM. Therefore, stochastic video prediction models have
been used to make predictions in such settings (Babaeizadeh
et al., 2017; Kumar et al., 2019). Our approach, by contrast,
was to use the data-efficiency of M-CPC1D to predict a video
with only the first five frames of that video, without training
on other stochastic videos.

xi xi + 1 xi + 2 xi + 3 xi + 4 xi + 5

Down Up Left Right

Figure 6. Stochastic Movement as Intelligence Tests. A video
of a 10x10 pixel square moving upwards is predicted by treating it
as an “intelligence test”. Five consecutive frames of the video are
used to predict the sixth frame, whose identity is chosen out of 4
images that are shifted by one pixel in one of the four directions
relative to the last frame.
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Without loss of generality, we evaluated the video prediction
ability of M-CPC1D with one video in which a square moved
upwards (Fig. 6). We optimized M-CPC1D on the first K =
5 frames {xi}Ki=1 of the video and used the latent variable
to select the sixth frame x̃K+1 out of four possible motion
directions, similar to the way we solved the intelligence tests.
We found that based on five frames, the model can correctly
predict the K + 1 frame with a probability of 97%± 1%.

To predict the next frame (K + 2), we used the last K − 1
frames of the original video and the predicted frame x̃K+1

to create a new sequence of length K ({xi}Ki=2 ∪ {x̃K+1}).
We then trained new, randomly-initialized networks Z and
T , on the new sequence and used it to predict frame K + 2,
and so on. We iterated this process for 45 frames and the
results are depicted in Fig. 7.

Figure 7. Predicted Videos. 500 videos obtained by video predic-
tion with M-CPC1D, conditioned on the 5 initial example frames.
A pixel’s shade corresponds to the ratio of predicted videos, in
logarithmic scale, that visited that pixel out of the 500 videos.

As demonstrated in Fig. 7, the first K = 5 frames and the
iterative process are enough for M-CPC1D to predict the
video correctly with a high probability.

5.2. Anomaly Detection

To solve intelligence tests, we used a predictive latent vari-
able to select a congruent image from a set of alternative
choice images. Predictive latent variables can also be used
for anomaly detection in tasks that do not entail a selec-
tion between alternatives. Specifically, given a sequence of
images, the task is to determine whether the last image is
congruent or incongruent with its preceding images.

Consider the two sequences depicted in Fig. 8. The task is to
determine, without prior training, that there is no anomaly

in the top sequence of images (tile 6 is congruent with
its preceding tiles) while there is anomaly in the bottom
sequence (tile 6 is incongruent with its preceding tiles). To
classify the congruency of a candidate image xc with a given
sequence, we performed a single optimization step on the
five sequence images with our loss function (Eq. 2). We
then compared the prediction error of the candidate image
εK,c to the average of the prediction errors of the sequence’s
consecutive images:

εth =
1

K − 1

K−1∑
j=1

εj,j+1 (3)

We use a threshold parameter α to classify candidate images:
when εK,c > α · εth we classify the candidate image as
anomalous; when εK,c < α · εth we classify it as congruent.

Figure 8. Anomaly Detection Tests. We provide our model a se-
quences of five images. Additionally, we generated two candidate
images: one congruent and one incongruent with the sequence.
The task of the model is to classify whether a candidate image is
congruent or not, based only on the sequence, without comparing
the two candidates.

Image sequences of length K = 5 were created such that
the size, number and shade of the objects in the images
increased monotonically along the sequences, while the ob-
jects’ shape and the order of grid placement were constants.
Two images were candidates for anomaly in each sequence:
a congruent image with features that changed according
to the sequence rules, and an incongruent image in which
the size, number and color of the shapes did not follow
the sequence rules. The shape and order of grid placement
was also constant in the incongruent image. To evaluate
the anomaly detection performance, we generated 500 such
tests. With this classification criterion, we achieved a suc-
cess rate of 85% ± 3% (taking into account false positive
and misses results; chance accuracy is 50%). Remarkably,
this result is achieved without any prior training, using only
the five images of each sequence, and without relying on
selection from alternatives.
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6. Conclusion
We showed that an easy-to-train latent prediction model
M-CPC1D can successfully solve prediction tasks. Specifi-
cally, we used the predictive latent variable to evaluate the
consistency of an image with a sequence of preceding im-
ages by training on those preceding sequence images alone.
This consistency evaluation allowed us to solve three tasks
without prior training: 1) Intelligence tests, in which the
task is to select the image that is most consistent with its
preceding images. 2) Video prediction in which we showed
that a small number of video frames, together with an it-
erative process, are sufficient to make some predictions in
a simple video. 3) And an anomaly detection task. Com-
mon to all these examples is that reasonable performance
is achieved with an extremely small number of examples.
This highlights the data efficiency of latent predictions.

It is generally argued that one main difference between
human and machine learning is the amount of data required
for the learning. For example, GPT-3 has been trained on
hundreds of billions of words, more than three orders of
magnitude more words than humans use when learning to
speak (Hart & Risley, 1995). Our results demonstrate that
also in machine learning, data efficiency can go a long way.

7. Relation to Previous Works
Intelligence tests solvers - Human intelligence is often
measured using intelligence tests that are similar to ours.
Solving intelligence tests relies on finding relevant features
in the provided examples and the rules that govern these fea-
tures (Blum & Blum, 1975; Siebers et al., 2015). Traditional
computational models that solved intelligence tests utilized
either prior knowledge of the relevant features (Rasmussen
& Eliasmith, 2011), knowledge about the rules that govern
these features (Sun & Dai, 2018), or both (Carpenter et al.,
1990). Today, machine learning models are able to learn the
relevant features and rules using deep artificial neural net-
works (Barrett et al., 2018; Hill et al., 2019). However, they
relied on both supervised learning and large datasets, unlike
humans that seem to be able to solve such tests without
prior training. Other models solved intelligence tests with
unsupervised learning (Zhuo & Kankanhalli, 2020) and by
meta-learning (Santoro et al., 2017; Kim et al., 2020), but
they also relied on extensive prior training before solving
the tests. Our work presents an ability to solve intelligence
tests without any prior training.

Contrastive learning - Contrastive loss function are widely
used for self-supervised learning (Chen et al., 2020; Le-
Khac et al., 2020). One contrastive algorithm, the CPC
algorithm, (Oord et al., 2018) is used for finding predictive
latent representations, which is useful for data-efficient im-
age recognition (Henaff, 2020) and learning world-models

that supports robotic object manipulation (Yan et al., 2020)
and playing Atari games (Anand et al., 2019). Compared
with these works, which relied on extensive training, we
trained M-CPC1D with only five images. This was possible
because we used a 1D latent variable feed-forward encoder
rather than a higher-dimensional recurrent network encoder.

Video prediction models - The video prediction task is use-
ful for various down-stream applications such as represen-
tational learning and model-based reinforcement learning.
Therefore, many deep learning models were developed to
solve this task (Oprea et al., 2020). State-of-the-art models
utilize a latent prediction models to solved the task (Min-
derer et al., 2019; Kim et al., 2019; Yang et al., 2018; Lee
et al., 2021). These models also required generative models,
which needed training as well. A stochastic model for the
latent variable has been shown useful for video generation
(Kumar et al., 2019; Franceschi et al., 2020; Babaeizadeh
et al., 2017). However, as we show here, a determinis-
tic latent model is sufficient for the selection task even in
stochastic environments, which allows for better data effi-
ciency.

Relation networks and meta-learning - M-CPC1D is sim-
ilar to Relation Network (RN) (Sung et al., 2018), a model
which utilized episode based meta-learning for classifying
examples by the abstract relation between them. While
RN can learn general abstract relations between inputs, our
model is inductively biased for learning a future-directed
residual relation between consecutive latent representations.
As a result of this and the fact that the task is a selection task,
RN models require a large number of episodes for training
while the intelligence tests can be solved without any prior
training.
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Supplementary Materials

S8. Results of other predictive features

Figure S9. Predictive Feature: color. Zero-episodes performance
when the color of the shapes became darker along the sequences.

Figure S10. Predictive Feature: number. Zero-episodes perfor-
mance when the number of shapes increased monotonically along
the sequences.

Figure S11. Predictive Feature: shape. Zero-episodes perfor-
mance when the shapes alternated between a triangle and a square
along the sequences.
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