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We quantified the effect of first experience on behavior in operant learning and studied its underlying
computational principles. To that goal, we analyzed more than 200,000 choices in a repeated-choice
experiment. We found that the outcome of the first experience has a substantial and lasting effect on
participants’ subsequent behavior, which we term outcome primacy. We found that this outcome primacy
can account for much of the underweighting of rare events, where participants apparently underestimate
small probabilities. We modeled behavior in this task using a standard, model-free reinforcement learning
algorithm. In this model, the values of the different actions are learned over time and are used to
determine the next action according to a predefined action-selection rule. We used a novel nonparametric
method to characterize this action-selection rule and showed that the substantial effect of first experience
on behavior is consistent with the reinforcment learning model if we assume that the outcome of first
experience resets the values of the experienced actions, but not if we assume arbitrary initial conditions.
Moreover, the predictive power of our resetting model outperforms previouly published models regarding
the aggregate choice behavior. These findings suggest that first experience has a disproportionately large
effect on subsequent actions, similar to primacy effects in other fields of cognitive psychology. The
mechanism of resetting of the initial conditions that underlies outcome primacy may thus also account
for other forms of primacy.

Keywords: reinforcement learning, operant conditioning, underweighting of rare events, risk aversion,
primacy

First impressions, you know, often go a long way, and last a long time.
—Dickens, The Life and Adventures of Martin Chuzzlewit

Operant Learning

According to the law of effect formulated by Thorndike over
a century ago, actions that are closely followed by satisfaction
are more likely to recur, whereas actions followed by discom-
fort are less likely to reoccur in that situation (Lattal, 1998;
Thorndike, 1911). Operant learning, in which behavior is a
function of the consequences of past behavior, is based on this
principle. The computational principles underlying operant
learning are a subject of debate. Some neurophysiological ev-
idence supports the view that operant learning is achieved

through the synergy of two processes. First, the values of the
different actions (or more generally, state actions) are learned
from past actions and their subsequent rewards. Second, these
learned values are used to choose among different actions such
that actions associated with a higher value are more likely to be
chosen (Doya, 2007; Glimcher, 2009). By contrast, there are
alternative views on operant learning that are not based on a
valuation system (Dayan & Niv, 2008; Erev & Barron, 2005;
Gallistel, Mark, King, & Latham, 2001; Law & Gold, 2009;
Loewenstein, 2010; Loewenstein & Seung, 2006; Sugrue, Cor-
rado, & Newsome, 2004).

Reinforcement Learning (RL)

Operant learning is typically modeled quantitatively using re-
inforcement learning (RL) algorithms (Sutton & Barto, 1998),
which describe how behavior should adapt to rewards and punish-
ments (Dayan & Niv, 2008). In this framework, the Q-learning
algorithm (Watkins, 1989; Watkins & Dayan, 1992) is particularly
noteworthy, as it has been widely used to model sequential
decision-making behavior in humans and animals (Barto, Sutton,
& Watkins, 1989; Daw, 2011; Neiman & Loewenstein, 2011;
Pessiglione, Seymour, Flandin, Dolan, & Frith, 2006). Here we
used Q-learning to quantitatively model human behavior in a
repeated choice experiment in which in every trial t, the participant
chooses an action at from a finite set of actions and receives a
reward rt. Q-learning describes how the expected average reward
(action value), of each action a in trial t, denoted by Qt�a�, changes
in response to that trial’s action and the resultant reward. The value
of the chosen action Qt�at� is updated by
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Qt�1�at� � Qt�at� � ��rt � Qt�at��, (1)

where 0 � � � 1 is the learning rate, which determines the
relative contribution of the most recent reward to the expected
average reward. The value of the nonchosen actions Qt (a � at)
remains unchanged. The smaller the magnitude of �, the smaller is
the contribution of the most recent reward to the value of the
action. If � � 1, the value of action at following the value update
is simply rt. If the reward rt is larger than the estimated action
value (rt � Qt(at) � 0), the action value increases, which in turn
increases the likelihood that this action will be chosen again in the
future. The reverse occurs if the reward is smaller than the action
value.

Equation 1 describes how the action values adapt over trials but
does not specify how these action values are used to select actions.
Several action selection rules, which determine the mapping be-
tween action values and the policy, have been previously pro-
posed. Two of these, ε-greedy and softmax are noteworthy, as they
are commonly used for modeling behavior (Sutton & Barto, 1998).
According to the ε-greedy action selection rule, the alternative
associated with the highest estimated action value is chosen, with
probability 1 � ε (0 � ε � 1). The other alternatives are chosen
randomly with a probability ε. The value of the parameter ε
determines the balance between exploration and exploitation (Co-
hen, McClure, & Angela, 2007). The larger the value of ε, the
more likely that actions associated with a low action value will be
chosen (exploration). By contrast, the smaller the value of ε, the
more likely that the action with the highest estimated value will
be chosen (exploitation).

An alternative action selection rule is the softmax rule. Ac-
cording to this rule, the probability of choosing an action a is
proportional to e�Qt(a), where parameter � controls the
exploration– exploitation trade-off. The lower the value of �,
the more likely that an action associated with a relatively low
action value will be selected. In contrast to the ε-greedy action
selection rule, the softmax action selection rule has a graded
sensitivity to the values of actions. Typically, the empirical
trade-off between exploration and exploitation (controlled by ε
or �) is estimated by fitting one of these action-selection rules
to the empirical data (Daw, 2011).

However, to the best of our knowledge, the shape of the action
selection rule has never been estimated nonparametrically. In the
Results section, we describe a novel method for estimating the
action selection rule.

Initial Conditions in RL

A model of value adaptation and action selection is not fully
determined without specifying the initial conditions of the value
adaptation rule, Equation 1. This is because the value adaptation
rule in Equation 1 is a difference equation, in which the current
value depends on the value of the previous trial. Therefore, the
values of the actions before the first trial need to be specified. The
common practice when modeling empirical behavioral data using
RL models is to initialize all action values to the same value Q0

(Daw, 2011). The value of Q0 is determined either arbitrarily (e.g.,
Q0 � 0) or by fitting to the empirical data (Daw, 2011; Sutton &
Barto, 1998). Theoretical studies have shown that under general
conditions, the choice of initial conditions has no effect on the

asymptotic learning behavior. In other words, the behavior of the
model after a sufficiently large number of trials is independent of
Q0 because the contribution of Q0 to the value of action a dimin-
ishes exponentially with the number of trials in which action a is
chosen (Sutton & Barto, 1998). Following these theoretical con-
siderations, little attention has been directed to determining how
the initial values of Equation 1 are specified.

Although the asymptotic behavior may be independent of the
initial conditions, it is not clear to what extent this asymptotic
behavior describes participants’ behavior in standard experiments
composed of a finite number of trials. There are two reasons why
the initial conditions may play an important role in explaining the
nonasymptotic experimentally observed behavior. First, the learn-
ing rate may be low, leading to a slow adaptation and a prolonged
contribution of the initial conditions to behavior. Second, the
action selection rule dictates that actions that are associated with a
relatively low value would be less often selected than those asso-
ciated with a relatively high value. This sampling bias is also
known as adaptive sampling or the hot stove effect (Denrell, 2005,
2007; Denrell & March, 2001). As a result, more trials would be
needed to update the values of actions that are associated with the
lower estimated value, potentially prolonging the effect of initial
conditions on behavior.

Reset of Initial Conditions Hypothesis

This article explores how the initial conditions of action values
are determined and to what extent these initial conditions shape
behavior in humans in the first 100 trials of repeated choice
experiments. We hypothesize that the initial conditions are not
arbitrarily set. Rather, we posit that the initial condition of each
action value is “optimistic” (formally Q0 � � for all action
values). Moreover, we posit that these initial values are reset to the
value of the reward in the first trial in which that action was
chosen. As a result, the outcome of the first action is expected to
have a disproportionately large effect on subsequent actions, sim-
ilar to primacy effects in other fields of cognitive psychology
(Hogarth & Einhorn, 1992; Mantonakis, Rodero, Lesschaeve, &
Hastie, 2009). The idea of resetting of the initial conditions can
apply to other forms of learning that are not associated with actions
or rewards. Thus, we posit that the resetting of initial conditions
may also help explain the primacy effect in belief updating (Asch,
1946; Hogarth & Einhorn, 1992).

Predicting Aggregate Behavior

If the initial action values are indeed reset by the outcome of
the first choice, a model that incorporates reset of initial con-
ditions (RIC) is expected to predict participants’ behavior better
than a model that assumes any arbitrary initial condition (AIC).
We test this prediction by comparing the predictive power of
several previously proposed models and the one proposed here.
Finally, we show that much of the underweighting of rare
events, in which participants tend to be more risk aversive when
the probability for a successful risky attempt is low (Barron &
Erev, 2003; Hertwig, Barron, Weber, & Erev, 2004), can be
attributed to RIC.
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The Experiment

To address our questions and test our hypotheses and predic-
tions, we analyzed the results of an experiment by Erev et al.
(2010). In this experiment, participants repeatedly chose between
two unmarked alternatives in blocks composed of 100 trials. One
alternative, denoted as risky, yielded either a high or low monetary
reward with a fixed probability. The other alternative, denoted as
safe, yielded a deterministic reward that was approximately equal
to the mean reward of the risky alternative. The first experience is
expected to be most pronounced if expected rewards are approx-
imately equal for the two alternatives, as is explained in the
Discussion section.

Method

The full details of the experimental procedures and methods
have been described elsewhere (Erev, Ert, & Roth, 2008; Erev et
al., 2010). A relevant summary of these methods is described here.

Participants and Instructions

Two hundred students (Technion, Israel) participated in the
experiment; half were in the “estimation” session and the other
half in the “competition” session (see Experiment Design section
below). Participants were paid 40 Israeli Shekels (ILS) (about U.S.
$11.40) for showing up, and could earn more money or lose part
of the show-up fee during the experiment. The procedure lasted
about 40 minutes on average per participant.

Participants were told that the experiment would include several
independent blocks and that in each they would be asked to
repeatedly select one of two unmarked buttons that appeared on a
computer screen for an unspecified number of trials. Each selec-
tion was followed by a presentation of its outcome (in ILS cur-
rency). The payoff from the unselected button (the forgone payoff)
was not presented. At the end of the experiment, one choice was
randomly selected, and the participant’s payoff for this choice was
added to the show-up fee to determine the final payoff. The
instructions (translated from Hebrew) were as follows:

This experiment includes several games. Each game includes several
trials. You will receive a message before the beginning of each game.
In each trial, you will be asked to select one of two buttons. Each press
will result in a payoff that will be presented on the selected button. At
the end of the experiment, one of the trials will be randomly drawn (all
the trials are equally likely to be drawn). Your payoff for the exper-
iment will be the outcome (in Sheqels) of this trial. Good luck! (Erev
et al., 2010).

Experiment Design

In each trial, pressing the risky button resulted in the delivery of
a high monetary payoff (H) with probability PH, or a low payoff
(L) with probability 1 � PH. Pressing the safe button resulted in a
medium payoff (M). There were 100 choice trials in each block.
Different blocks differed in reward schedule parameters, namely
H, L, M, and PH. The location of the buttons changed between
sections randomly, so there was no association between button
type and location.

There were two experimental sessions: an “estimation” session
and a “competition” session. The two sessions used the same

methods and examined similar (but not identical) decision prob-
lems, as is described below. Both sessions consisted of different
collections of 60 problem sets, and the exact problem sets were
determined by a random selection of the parameters (rewards and
probabilities) L, M, H, and PH according to a predefined algorithm
(Erev et al., 2010). In each session, participants were randomly
assigned to one of five different subgroups. Each subgroup con-
tained 20 participants who were presented with the same 12
problem sets. The distribution of PH across problems is depicted in
Figure 1A. In approximately one third of the problems, PH was
relatively small, PH � .15 (denoted as low-PH problems; black in
Figure 1A), in approximately one third it was relatively high, PH �
.85 (denoted as high-PH problems; white in Figure 1A), and in
approximately one third it had an intermediate value (gray in Figure
1A). As shown in Figure 1B, the medium prize M was chosen from
a narrow distribution whose mean was equal to the expected value of
the risky alternative �r� � PH · H � �1 � PH� · L.

Results

Outcome Primacy

The RIC hypothesis predicts that the outcome of the first trial
should have a disproportionately large effect on subsequent choice
behavior. To study this prediction, we quantified the extent to
which the outcome of the first risky choice, L or H, affects
subsequent choices. We separated the blocks of each problem set
into two groups, according to the outcome of the first risky choice,
L or H. We focused our attention on behavior in 73% of the
problem sets (88/120), in which there was at least one block
associated with each of the two groups. For each group in these
problem sets, we computed the frequency of choosing the risky
choice in all trials subsequent to the first risky choice. These two
frequencies are an estimate of the probabilities of choosing the
risky action, conditioned on the outcome of the first risky choice
for the corresponding problem set.

Averaging over the problem sets, we found that the probability
of choosing the risky choice, provided that the outcome of the first
risky choice was L, is AL � 31 	 3% (see Figure 2A top, red). This

Figure 1. The experimental reward schedule. A: The distribution (N
denotes counts) of PH in the problem sets. B: The expected returns from the
“risky” alternatives (�r�) as a function of the safe payoff. M: Black, gray,
and white correspond to problem sets in which the value of PH was
relatively low (PH � .15), intermediate (.15 � PH � .85), and high (PH �
.85), respectively.
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number is substantially smaller than that probability, provided that
the outcome of the first risky choice was H, AH � 47 	 3% (see
Figure 2A, top panel, blue), t(174) � 4.96, p � 2 
 10�6, 95% CI
[9.7%, 22.5%], g � 0.84. This result shows that the outcome of the
first risky trial has a substantial effect on subsequent choice
behavior. Note that AL and AH are based on choices made through-
out a block of 100 trials.

To further quantify the time scale associated with the effect of
the first trial on behavior, we computed, for each of the problems
in the 88-problem subset (see above), the probabilities of choosing
the risky choice in all trials t, conditioned on the outcome of the
first risky choice in that block. These conditional probabilities,
averaged over the different problem sets, are depicted in Figure 2A
(bottom panel), where the blue and red lines indicate the proba-
bility of choosing the risky choice given that the first risk outcome
was H and L, respectively. In 92.3% of the blocks, the first risky
choice was on either the first or the second trial. Thus, the trial
number is approximately equal to the number of trials elapsed
from the first risky choice. Therefore, the difference between the
blue and red curves is a measure of the effect of the outcome of the
first risky choice on behavior in subsequent trials.

We found that even in the last trial, t � 100, there was a
statistically significant difference between the two curves,
t(206) � 3.397, p � 8 
 10�4, 95% CI [5.7%, 21.5%]. Similarly,
a statistically significant difference between the two curves was
observed for each of the trials in Figure 2A, bottom panel (p �
.05). This result is a demonstration that the outcome of the first

risky choice affects behavior for at least 100 trials. This long-
lasting effect of the first experience is reminiscent of the primacy
effect in other fields of psychology in which the first stimulus is
particularly salient (Hogarth & Einhorn, 1992; Mantonakis et al.,
2009). Therefore, we denote the effect of the first risky reward on
subsequent behavior as outcome primacy. In the Discussion sec-
tion, we elaborate on the similarities between outcome primacy
and other forms of primacy.

Modeling Outcome Primacy

Arbitrary initial conditions. The outcome of the first risky
choice has a significant and long-lasting effect on choice behavior
(see Figure 2A, top and bottom panels). However, this outcome
primacy does not necessarily indicate a reset of the initial condi-
tions (the RIC hypothesis). As mentioned in the introduction, a low
learning rate and adaptive sampling, which naturally emerges in
standard RL algorithms, might give rise to a long time scale
(Denrell, 2005, 2007; Denrell & March, 2001). In order to test
whether the RL framework can account for outcome primacy, we
considered a standard AIC Q-learning algorithm with the follow-
ing action selection rule, which is motivated by the experimental
data (see below):

Pr�a� � (1 � 2�)
e�Qt(a)

�
a’

e�Qt�a’�
� �. (2)

Figure 2. Outcome primacy effect: The average (over problem sets) probability of choosing the risky
alternative, conditioned on the outcomes of the first risky choice. Red, low reward (L); blue, high reward (H).
Top panel represents the average probability of choosing the risky alternative, averaged over all subsequent
trials; the bottom panel represents the average probability of choosing the risky alternative in a trial. A: The
empirical data. B: Simulation of the arbitrary initial conditions (AIC) Q-learning model. C: Simulation of the
resetting of initial conditions (RIC) Q-learning model. Bars (top panel) and shaded area (bottom panel) represent
the standard error of the mean.
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We term the action selection rule in Equation 2 ε-softmax
because it is a hybrid of the ε-greedy and softmax action selection
rules. If ε � 0, then the ε-softmax is simply the softmax action
selection rule. The ε-softmax becomes ε-greedy if � � �. Note
that the ε-softmax action selection rule has a graded sensitivity to
action values like the softmax action selection rules, and like the
ε-greedy, it maintains exploration even when the value of one of
the actions is much larger than that of the other action.

The AIC Q-learning model with the ε-softmax action selection
rule is characterized by four parameters: (a) the initial conditions
Q0, (b) the learning rate � (see Equation 1) and two parameters of
the action selection rule, (c) ε, and (d) �. We found the set of
parameters that best fit the sequences of actions of each participant
in the experiment by maximizing the likelihood of the sequence.
We then used these parameters to simulate the behavior of the AIC
Q-learning model such that each simulated participant was tested
on the same problem sets as the corresponding human participant.

The results of these simulations are depicted in Figure 2B,
which shows that in the AIC Q-learning model, the probability of
choosing the risky choice, provided that the outcome of the first
risky choice was L, is AL

AIC � 40 	 2%, which is not statistically
different from that number, provided that the outcome of the first
risky choice was H, AL

AIC � 40 	 2%, t(170) � 0.12, p � .91, 95%
CI [�4.2%, 4.7%], g � 0.25. Thus, the AIC Q-learning model
with the parameters extracted from the behavior of the participants
in the experiment is inconsistent with the finding that the outcome
of the first risky choice has a substantial effect on the aggregate the
probability of choosing the risky alternative (see Figure 2B, top
panel).

Moreover, considering the conditional probabilities of choosing
the risky alternative over trials (see Figure 2B, bottom panel), we
found that in the AIC Q-learning model, these conditional proba-
bilities became statistically indistinguishable from Trial 13 on-
ward, t(202) � 0.64, p � .52, 95% CI [�5.1%, 10.0%], g � 0.09
for Trial 13. These results indicate that the AIC Q-learning cannot
account for the outcome primacy effect observed in the behavior of
the participants (compare Figure 2A with Figure 2B).

Reset of initial condition. The failure of the AIC Q-learning
model to account for the observed outcome primacy prompted us
to test the effect of incorporating a reset of the initial conditions
into the Q-learning model. In this model, the initial values of the
two alternatives are “optimistic”: Q0 � � for all action values
(Sutton & Barto, 1998). Moreover, these initial values are reset to
the value of the immediate reward after the first experience of each
alternative (see RIC hypothesis in the introduction). In subsequent
trials, these values are updated according to Equation 1. Similar to
the analysis of the AIC Q-learning model, we used the method of
maximum likelihood to estimate the parameters of the RIC
Q-learning model with the ε-softmax action selection rule that best
fit the behavior of the participants. Note that the number of
parameters that characterize the RIC Q-learning model is smaller
than that of the AIC Q-learning model because the initial values
are not a free parameter. We then used these parameters to simu-
late the behavior of the RIC Q-learning model such that each
simulated participant was tested on the same problem sets as the
corresponding human participant.

The results of these simulations are depicted in Figure 2C,
which shows that the probability of choosing the risky alternative
in the RIC model, provided that the outcome of the first risky

choice was L, is AL
RIC � 32 	 2%, that is, significantly lower than

that probability, provided that the outcome of the first risky choice
was H, AH

RIC � 47 	 2%, t(164) � 6.02, p � 1 
 10�8, 95% CI
[9.7%, 19.2%], g � 1.12. Moreover, the predictions of the RIC
model are statistically indistinguishable from the experimentally
measured aggregate data: The pairs (AL, AL

RIC) and (AH, AH
RIC) are

not statistically different, t(204) � 0.42, p � .67, 95% CI [�3.7%,
5.7%], g � 0.06 and, t(203) � 0.06, p � .94, 95% CI [�5.3%,
5.1%], g � 0.01, respectively (see Figure 2C, top panel).

Similarly, when considering the probabilities of choosing the
risky alternative over trials conditioned on the outcome of the first
risky choice (see Figure 2C, bottom panel), we found that the
dynamics of the RIC model were qualitative similar to that of
the empirical data (see Figure 2A, bottom panel). Moreover, in the
RIC simulation, as in the empirical data, even in the last trial, t �
100, there was a statistically significant difference between the two
conditional probabilities, t(201) � 4.34, p � 2 
 10�5, 95% CI
[8.7%, 23.2%], g � 0.61.

Short-Term Consequences of the RIC Hypothesis

The RIC hypothesis was also supported by the short-term effect
of the outcome of the first risky choice on subsequent behavior: the
initial rate of alternations, regardless of action or outcome and
the phasic (steplike) change in choice preference according to the
outcome of the first risky action.

Initial rate of alternations. In 84% of the blocks (2,006
blocks out of 2,400), the first choice was different from the second,
indicating that the probability of alternation in the second trial was
significantly larger than chance (binomial, p � 1 
 10�237, 95%
CI [82.0%, 85.0%]). Moreover, the probability of alternation to the
safe alternative in the second trial after a risky choice in the first
trial was higher than chance if the outcome of the first risky choice
was either H or L as depicted in the second trial in Figure 2A,
bottom panel (516 blocks out of 645, binomial, p � 1 
 10�52,
95% CI [76.6%, 83.0%], in case that the first risky choice was H
and 492 blocks out of 569, binomial, p � 1 
 10�68, 95% CI
[83.4%, 89.2%], in case that the first risky choice was L). In the
framework of AIC Q-learning, such alternation can result from
optimistic initial conditions, that is, initial values higher than
typical values of reward on the task (Sutton & Barto, 1998).
However, optimistic initial conditions are expected to result, in
general, in several trials of a high probability of alternation be-
tween the choices, depending on the magnitude of the learning
rate. This is because independent of the action outcome, its action
value is reduced. By contrast, the probability of alternation in the
empirical data already drops below chance in the third transition
(1,017 blocks out of 2,400, binomial, p � 4 
 10�14, 95% CI
[40.0%, 44.4%]). In contrast to the AIC Q-learning model, the RIC
Q-learning model predicts a high rate of alternation in the second
trial and a lower-than-chance rate of alternation after both alter-
natives are chosen, as observed in the behavioral data. Specifically,
the alternation rate during the first two trials in the RIC Q-learning
model was 83%, which is not significantly different form the
empirical alternation rate, t(4798) � �0.89, p � .37, 95% CI
[�0.03, 0.01], g � 0.026.

Phasic change in choice preference. The dynamics of the
probability of choosing the risky alternative conditioned on the
outcome of the first risky choice (see Figure 2A, bottom panel) is
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characterized by a large phasic response, followed by a slow decay
of the difference between the two conditional probabilities. The
co-occurrence of the two phenomena, namely, a large phasic
response and a slow decay, is difficult to account for in the
framework of AIC. The reason is that a trade-off between the two
phenomena is expected: A low learning rate would enable a slow
decay, but the phasic response would be small. By contrast, a high
learning rate that can account for the considerable phasic differ-
ence between the two conditional probabilities would result, in
general, in fast decay. The latter was observed in the simulation of
the AIC model based on participants’ estimated parameters (see
Figure 2B, bottom panel). By contrast, in the RIC model, these two
phenomena are decoupled: The reset of initial conditions results in
a large phasic response, independent of the value of the learning
rate parameter. Indeed, both a large phasic response and a slow
decay are observed in the simulation of the RIC model (see Figure
2C, bottom panel).

Predicting Aggregate Behavior

In the previous subsections, we showed that the RIC model can
account for the outcome primacy effect as well as the alternation
rate in the second trials and the phasic response. In order to further
test the predictive power of the RIC model, we compared it with
alternative models of operant learning. As described in the Method
section, the behavioral data analyzed in this article were used in a
competition (Erev et al., 2010), in which models were compared
according to their ability to predict the probability of choosing the
risky alternative, averaged over all trials and participants, given the
parameters of the problem set (M, H, L, and PH; see the Method
section).

The competition consisted of two sessions, an estimation session
and a competition session, each containing 100 participants and 60
problem sets (see the Method section). The estimation session was
used to optimize the parameters of the candidate models, and their
performance was tested by comparing their predictions with hu-
mans’ behavior in the competition session. The aggregate proba-
bility of choosing the risky alternative was predicted by each
model (Ppredict) for each problem set, and was compared with the

empirically measured probability, averaged over all participants
for that problem set (Pempiric).

The predictive power of the different models was evaluated
using three measures: (a) the fraction of problems, in which
both Ppredict and Pempiric were either above or below 50%
(pagree); (b) the Pearson’s normalized correlation (�) between
Ppredict and Pempiric; (c) the mean square difference (MSD)
between Ppredict and Pempiric, averaged over all problem sets
(see Table 1). An additional measure was the Equivalent Num-
ber of Observation (Erev, Roth, Slonim, & Barron, 2007).
However, because this measure is a monotonic function of the
MSD, it was not used here.

In order to evaluate the RIC Q-learning model, we estimated the
three parameters of the RIC Q-learning model, �, �, and ε, that
best fit the trial-by-trial behavior of each of the participants in the
estimation session (similar to Figure 2C). The 100 triplets of
parameters, one triplet for every participant, were regarded as
representatives of the distribution of parameters across the popu-
lation of participants. Then, for every problem set in the compe-
tition session, we estimated the expected aggregate probability of
choosing the risky alternative, Ppredict, by simulating the RIC
Q-learning separately for each triplet of parameters and averaging
the aggregate probability of choosing the risky over all simula-
tions. As can be seen in Table 1, this heterogeneous RIC
Q-learning model that takes into account the population heteroge-
neity outperformed all previously proposed models with respect to
MSD and Pagree and was performing as well as the best baseline
model (explorative sampler with recency) with respect to correla-
tion measurement �.

To study the contribution of the population heterogeneity to the
predictive power of the RIC Q-learning model, we considered a
homogenous RIC Q-learning model, which is characterized by the
same triplet of parameters for all simulated participants. The single
triplet of parameters was found by simulating the model and
choosing the triplet that minimized the MSD between Ppredict and
Pempiric, averaged over all problem sets in the estimation session,
using the Nelder-Mead simplex (direct search) method (Lagarias,
Reeds, Wright, & Wright, 1998). Simulating the model with the

Table 1
Performance Comparison Between Models in the Aggregate Risk Aversion Prediction Competition

Model name
No. of

parameters

Estimation Competition

Pagree (%) � MSD·103 Pagree (%) � MSD·103

Basic RLa 2 56 0.67 22.4 66 0.51 26.3
Normalized RLa 2 76 0.83 9.2 84 0.84 8.7
Normalized RL with inertiaa 4 75 0.86 8.0 86 0.85 8.4
Two stage samplera 7 80 0.90 6.5 83 0.87 8.4
ACT-Ra 2 77 0.88 9.4 87 0.89 7.5
Homogenous AIC Q-learningb 4 80 0.92 7.2 87 0.90 7.0
Explorative sampler with recencya 4 82 0.88 7.5 86 0.89 6.6
Heterogeneous RIC Q-learningc 300 78 0.93 5.2 88 0.89 6.4
Homogenous RIC Q-learningd 3 77 0.91 5.8 88 0.90 6.4

Note. RL � reinforcement learning; AIC � arbitrary initial conditions; RIC � resetting of initial conditions; MSD � mean square error.
a Taken from the competition results (Erev et al., 2010) and ordered by competition session MSD (models proposed in this article are marked by bold
font). b � � 52, ε � 0.2, � � 0.4, Q0 � 1 were chosen by gradient descent optimization of the MSD on the estimation set. c The heterogeneous
population values were chosen by maximizing the likelihood per participant and are summarized here by their mean, STD and the median in brackets
respectively: � � (370, 470, 22), ε � (0.16, 0.1, 0.17), � � (0.5, 0.5, 0.5). d � � 52, ε � 0.2, � � 0.4 were chosen by gradient descent optimization
of the MSD on the estimation set.
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resultant triplet of parameters over the problems in the competition
session, we found that the predictive power of the homogenous
RIC Q-learning model is comparable to the heterogeneous RIC
Q-learning model (see Table 1). However, in contrast to the
heterogeneous RIC Q-learning model, the homogeneous RIC
Q-learning model predicts outcome primacy, which is substantially
smaller than the experimentally observed outcome primacy (not
shown).

Repeating the same analysis for the AIC Q-learning model, we
found that the predictive power of a homogeneous AIC Q-learning
model is lower than that of the RIC Q-learning model, further
strengthening the RIC hypothesis. Note that the better descriptive
power is despite the fact that the number of parameters that
characterize the AIC Q-learning model is larger than that of the
RIC Q-learning model (4 and 3 parameters, respectively). None-
theless, it should be noted that the AIC Q-learning model outper-
forms previously proposed RL models (compare with Basic RL,
Normalized RL, and Normalized RL with inertia rows in Table 1).
The primary difference between those models and the AIC
Q-learning model is the action selection function used (softmax vs.
ε-softmax), which demonstrates the importance of choosing an
accurate action selection function when modeling choice behavior.

The Action Selection Rule

In order to model learning behavior in the framework of
Q-learning, as was described in the previous sections, the action
selection function should be specified. Previous studies have typ-
ically assumed a particular functional form of the action selection
function and estimated its parameters from the data (Daw, 2011).
However, to the best of our knowledge, the action selection rule
has not been estimated nonparametrically. The reason is that there
is no direct access to the arguments of the action selection func-
tion, the action values, and to the output, the probability of choice.

By contrast, here we develop a novel procedure to characterize
the shape of the action selection function nonparametrically. This
method is based on the behavior of the participants in the third trial
of the blocks, in which both the safe and the risky alternatives had
been selected in the first two trials (2,006 blocks out of 2,400
blocks). These trials were selected for analysis because they pro-
vide an opportunity to estimate the shape of the action selection
function nonparametrically. To see this, consider the AIC
Q-learning model in blocks in which both the safe and the risky
alternatives were selected in the first two trials. According to
Equation 1, the values of the risky action Q3(risky) and the safe
action Q3(safe) in the third trial of these blocks are given by
Q3(a) � (1 � �)Q0 � �rta

, where ta � {1, 2} is the trial number
in which action a was selected. The difference between the values
of the two alternatives Q3 � Q3(risky) � Q3(safe) is independent
of the initial conditions Q0, and is linear in the reward difference
r � rtrisky

� rtsafe
. The resulting linear relation Q3 � �r enables

a direct estimation of the average action selection rule with a scale
factor �. Similarly, in the framework of the RIC Q-learning model,
the above derivation will result in the relation Q3 � r.

Figure 3 depicts the probability of choosing the risky alternative
in the third trial as a function of the difference in the rewards r.
Note that in contrast to the ε-greedy action selection, the proba-
bility of choice is graded with the value of r even when r � 0.
Moreover, in contrast to the softmax action selection rule, the

probability of choice does not converge to a deterministic policy
even when the absolute value of r is large. Thus, we chose to
model the action selection rule of the participants with the
ε-softmax rule (Equation 2), which manifests graded sensitivity to
r while maintaining exploration even when the absolute differ-
ence between the action values is large. This ε-softmax rule was
used during all the simulation conducted in this article.

Underweighting of Rare Events

When learning from experience, participants are more risk aver-
sive the smaller the probability of the high-outcome PH, a phe-
nomenon that has been termed underweighting of rare events
(Barron & Erev, 2003; Hertwig et al., 2004) because the partici-
pants behave as if they underestimate the probability of the low-
probability outcome. In order to quantify the magnitude of the
underweighting of rare events in the experiment, we considered the
aggregate probability of choosing the risky choice in the low-
(PH � .15) and high- (PH � .85) PH problems (see the Method
section) separately. We found that the value of PH had a substantial
effect on participants’ choices: in the high-PH blocks, participants
chose the risky alternative in 50 	 3% of the trials (white in Figure
4A, top panel). By contrast, participants made a risky choice only
in 27 	 3% of the trials in the low-PH blocks (black in Figure 4A,
top panel). The significant difference in the two probabilities of
choice, 23 	 4%, is a measure of the magnitude of the under-
weighting of rare events effect, t(89) � 9.1, p � 2 
 10�14, 95%
CI [18.4% 28.6%], g � 1.91. Note that this substantial difference
in behavior occurred despite the fact that in both cases, the return
of the risky alternative was approximately equal to that of the safe
alternative (see Figure 1B).

The probability of a high reward (H) in the first risky trial (as in
any risky trial) is PH. Therefore, on average, there will be more H

Figure 3. The action selection rule. The probability of choosing the risky
alternative in the third trial as a function of the difference in the rewards
between the risky and safe alternative in the first two trials averaged over
2,006 blocks in which both alternatives were sampled in the first two trials.
The different blocks were grouped according to the value of r into 25 bins
of approximately equal size. For each bin, the fraction of trials in which the
risky alternative was chosen is plotted as a function of the average value of
r. Error bars correspond to the standard error of the mean.
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outcomes for the first risky choice in high-PH blocks than in
low-PH blocks. Therefore, outcome primacy predicts that this
excess of H outcomes in the high-PH blocks should bias choice in
favor of the risky alternative in those blocks, compared with
behavior in the low-PH blocks. Therefore, outcome primacy pre-
dicts underweighting of rare events. In order to quantify the
contribution of outcome primacy to the underweighting of rare
events, we constructed a generative model that predicts the effect
of PH on aggregate choice based on the two conditional probabil-
ities AL and AH, which measure the effect of the first risky choice
outcome on aggregate behavior (see Figure 2A, top panel). This
generative model posits that the probability of a choosing the risky
alternative in a block is determined solely by the binary outcome
of the first risky choice, H or L. If that outcome is H, the model
predicts that the participants would choose the risky alternative in
AH of the trials (see the Outcome Primacy section). If it is L, the
risky alternative would be chosen in AL of the trials. Consequently,
according to this generative model, the probability of choosing the
risky alternative in a trial in a problem characterized by PH is:

Pr�a � ‘ risky ’ ; PH� � AH · PH � AL · (1 � PH). (3)

In order to relate Equation 3, which predicts behavior for a given
problem set to average behavior in the low- and high-PH blocks
(see Figure 4A, top panel), we averaged Equation 3 over the
different problems, separately for the low- and high-PH problem
sets. The predictions of the generative model for the low- and
high-PH problems are depicted in Figure 4A (bottom panel) in
black and white, respectively. The generative model predicts that
the magnitude of the underweighting of rare events should be 14 	
3%, approximately 60 	 17% of the magnitude of the empirically
measured underweighting of rare events (23 	 4%). This result

indicates that outcome primacy contributes substantially to the
experimentally observed underweighting of rare events.

Whereas outcome primacy implies underweighting of rare
events, the opposite case, namely that underweighting of rare
events implies primacy, is not true. To see this, we analyzed the
results of the simulations of the AIC Q-learning model and found
significant underweighting of rare events: In the high-PH blocks,
the simulated participants chose the risky alternative in 52 	 2%
of the trials (white in Figure 4B, top panel). In contrast, the
simulated participants chose “risky” only in 30 	 2% of the trials
in the low-PH blocks (black in Figure 4B, top panel), t(89) � 13.8,
p � 9 
 10�24, 95% CI [18.5%, 24.8%], g � 2.89. The under-
weighting of rare events in the AIC Q-learning model is in line
with previous studies showing that the underweighting of rare
events naturally emerges from RL models (see the Discussion
section). Nevertheless, there is no outcome primacy in the AIC
Q-learning model, (AH

AIC � AL
AIC), and therefore the generative

model cannot explain the underweighting of rare events predicted
by the AIC Q-learning model (0 	 3% out of 22 	 3%; see Figure
4B, bottom panel).

Similar to the behavioral data and to the AIC Q-learning model,
there was a significant underweighting of rare events in the sim-
ulations of the RIC Q-learning model: Simulated participants
chose the risky alternative in 51 	 2% of the trials in the high-PH

blocks (white in Figure 4C, top panel) and in 29 	 2% of the trials
in the low-PH blocks (black in Figure 4C, top panel), t(89) � 11.8,
p � 7 
 10�20, 95% CI [18.6%, 26.1%], g � 2.47. This under-
weighting of rare events in the simulations is not statistically
different from the experimentally observed effect, t(84) � 0.86,
p � .39, 95% CI [�7.0%, 2.7%], g � 0.18; and, t(84) � 0.46, p �
.65, 95% CI [�5.2%, �3.2%], g � 0.09, for the low and high PH,

Figure 4. The underweighting of rare events and the generative model. Top panel: The probability of choosing
the risky alternative averaged over the low-PH blocks (black) and the high-PH blocks (white). Bottom panel: The
probability of choosing the risky alternative as predicted by the generative model based on the outcome of the
first risky choice. A: The empirical data. B: Simulation of the arbitrary initial conditions (AIC) Q-learning
model. C: Simulation of the resetting of initial conditions (RIC) Q-learning model. Error bars correspond to the
standard error of the mean.
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respectively. Similar to the behavioral data and in contrast to the
AIC Q-learning model, outcome primacy accounts for 56 	 13%
of the magnitude of underweighting of rare events in the simula-
tion of the RIC Q-learning model (12 	 2% out of 22 	 3%; see
Figure 4C, bottom panel).

Another way of demonstrating the contribution of outcome
primacy to the underweighting of rare events is to compare the
average aggregate choice in the low- and high-PH blocks, condi-
tioned on the outcome of the first risky choice. We denote these
averages by Ar1

PH, where r1 � {L, H} is the outcome of the first
risky choice and PH � {1, 2} is the PH block type (low or high,
respectively). If participants’ aggregate choice behavior is domi-
nated by the primacy effect, it is expected that the PH block type
will have a negligible effect on behavior once conditioned on the
first risky outcome, formally, AH

↓ � AH
↑ and AL

↓ � AL
↑. In contrast,

if participants’ sensitivity to the value of PH is not mediated by the
outcome of the first risky choice, it is expected that within a PH

block type, this outcome will have only a negligible effect on
behavior, AH

↓ � AL
↓ and AH

↑ � AL
↑.

Figure 5A depicts the values of Ar1

PH, where blue and red hues
denote H and L, and dark and light brightness denote low- and
high-PH block type, respectively. We found that the contribution
of block type to aggregate behavior was smaller than the contri-
bution of the outcome of the first risky choice. To quantify this
result, we used a two-way analysis of variance that showed that the
outcome of the first reward effect was statistically significant, F(1,
149) � 36.13, MSE � 1.56, � � 0.46, p � 1.4 
 10�8. By
contrast, the contribution of the PH block type and its interaction
with the outcome of the first risky choice were not statistically
significant, F(1, 149) � 2.08, MSE � 0.09, � � 0.2, p � .15; and,
F(1, 149) � 1.28, MSE � 0.05, p � .26, respectively. These

results indicate that the outcome of the first risky choice is the
major contributor to the underweighting of rare events and further
support the hypothesis that the outcome primacy effect plays an
important role in aggregate choice behavior.

Repeating the same analysis for the AIC Q-learning model (see
Figure 5B) revealed that in this model, the PH block type domi-
nates choice behavior, F(1, 147) � 136.74, MSE � 1.67, � � 0.71,
p � 1 
 10�22, and not the outcome of the first risky choice, F(1,
147) � 0.2, MSE � 2.4 
 10�3, � � 0.2, p � .66. By contrast, in
the RIC Q-learning model (see Figure 5C), similar to the behavior
of the participants, the outcome of the first risky choice affected
choice behavior more strongly than the PH block type, F(1, 144) �
45.56, MSE � 0.99, � � 0.54, p � 3 
 10�10; and, F(1, 144) �
9.31, MSE � 0.202, � � 0.34, p � 3 
 10�3, respectively.

Discussion

The primary objective of this study was to test our hypothesis
that first experience resets the initial conditions in operant learn-
ing. We showed that, indeed, the outcome of the first risky choice
has a long-lasting effect on subsequent choice behavior, a phe-
nomenon we termed outcome primacy (see Figure 2A). To the best
of our knowledge, the question of primacy in operant learning has
never been addressed. To test our hypothesis, we estimated the
action selection function nonparametrically, modeled it using a
ε-softmax function, and implemented it in a Q-learning model (see
Figure 3). In line with our hypothesis, this standard RL model is
consistent with the effect of the outcome of the first choice on
behavior if we assume that the outcome of the first choice resets
the value of the action (see Figure 2C), but not if we assume
arbitrary initial conditions (see Figure 2B). Our hypothesis is

Figure 5. The underweighting of rare events, conditioned on the outcome of the first risky choice. The
probability of choosing the risky alternative for the low-PH (dark) and high-PH (bright) blocks, conditioned on
the outcome of the first choice: L (low, red) and H (high, blue). A: The empirical data. B: Simulation of the
arbitrary initial conditions (AIC) Q-learning model. C: Simulation of the resetting of initial conditions (RIC)
Q-learning model. Error bars correspond to the standard error of the mean.
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further supported by the fact that our model predicts aggregate
probability of choice in operant learning more accurately than
other previously proposed models (see Table 1). Finally, our
results indicate that outcome primacy substantially contributes to
the underweighting of rare events (see Figures 4 and 5). These
results strongly suggest that outcome primacy plays an important
role in shaping behavior in operant-learning tasks.

The RIC Hypothesis and the Underweighting of Rare
Events

Previous studies have suggested that the underweighting of rare
events can result from estimation bias, which is enhanced by
adaptive sampling (Denrell, 2005, 2007), also known as the hot
stove effect (Denrell & March, 2001). The idea behind estimation
bias is that if PH is sufficiently small, the empirical average of the
past outcomes of the risky choices is typically lower than the true
(ensemble) average. The opposite effect is expected in problem
sets in which PH is sufficiently large. This effect is particularly
pronounced if participants rely on a relatively small sample, due to
either limited memory or overweighting of recent samples (Barron
& Erev, 2003; Erev, Ert, & Yechiam, 2008; Hertwig et al., 2004).
Researchers have hypothesized that the finite number of samples
in the experiment is sufficient to account for the estimation bias
and the underweighting of rare events (Fox & Hadar, 2006).
However, this hypothesis has been contested by findings that rare
events are underweighted even when the sample is representative
(Hau, Pleskac, Kiefer, & Hertwig, 2008; Hertwig & Erev, 2009;
Ungemach, Chater, & Stewart, 2009). It should be noted that
recency, in which more recent samples are more influential than
other samples (Hogarth & Einhorn, 1992), would result in a biased
estimation even in representative examples (Hertwig et al., 2004).
Such recency naturally emerges in Q-learning (both AIC and RIC)
because of the adaptation rule (Equation 1). Similarly, the resetting
of initial conditions results in more weight being given to a single
experience, the first experience, which yields a similar estimation
bias.

Adaptive sampling enhances the estimation bias by the follow-
ing asymmetry: If the decision maker temporarily underestimates
the value of the risky alternative, she or he will tend to avoid it. By
contrast, an overestimation of the value of the risky alternative will
motivate additional choices of the risky alternative and hence
reduce the bias. Adaptive sampling affects choice behavior in two
ways. First, it biases participants against the risky alternative,
resulting in risk-aversion behavior. Second, it amplifies the under-
weighting of rare events caused by the estimation bias (Denrell,
2005, 2007). Estimation bias and hot stove effects are implicitly
incorporated in the AIC and RIC Q-learning models. The value
adaptation results in estimated action values based primarily on the
most recent trials. Adaptive sampling is a natural consequence of
the action selection rule. In fact, substantial underweighting of rare
events was observed in our simulations of the AIC Q-learning
model (see Figure 4B, top panel), consistent with previous studies
(Denrell, 2005, 2007).

Our analysis focused on the contribution of the first experience,
through the outcome primacy, to the underweighting of rare
events. The analysis of the empirical data showed that outcome
primacy accounts for a substantial part of the underweighting of
rate events (see Figures 4A and 5A), which is consistent with the

RIC Q-learning model (see Figures 4C and 5C). According to the
RIC Q-learning model, the outcome of the first choices makes a
disproportionately large contribution to the action values. This
overweighting of the first experience effectively decreases the
sample used for estimating the action values and thus enhances the
estimation bias, and, consequently, the underweighting of rare
events.

The underweighting of rare events depicted in Figures 4 and 5
is quantified as an average over the entire block of 100 trials.
Because the contribution of the outcome of the first risky choice to
behavior decreases with trial number and because outcome pri-
macy contributes substantially to the underweighting of rare
events, the magnitude of the underweighting of rare events is
expected to decrease with trial number as well. To test this, we
computed the magnitude of the underweighting of rare events for
each trial individually by computing the difference in the proba-
bilities of choosing the risky alternative in the high- and low-PH

blocks.
As depicted in Figure 6 (magenta), the magnitude of the under-

weighting of rare events increases within several trials and de-
creases gradually throughout the block. The phasic increase can be
attributed to the resetting of the initial conditions, whereas the
decrease can be attributed to an effective increase in the number of
samples in the action value estimation, which in turn decreases the
sampling bias. This dynamics of the underweighting of rare events
is consistent with the simulations of the RIC Q-learning model (see
Figure 6, black, first 100 trials).

The simulations of the RIC Q-learning model can also be used
to predict the magnitude of underweighting of rare events in a
longer experiment. As depicted in Figure 6, black, the magnitude
of the underweighting of rare events is expected to plateau at a
positive value in longer experiments. This residual underweighting
of rare events in the steady state is independent of the reset of
initial conditions.

Figure 6. The magnitude of the underweighting of the rare event effect
(difference between the probabilities of choosing the risky alternative in
high- and low-PH blocks) for each trial computed for the empirical data set
(magenta) and for the resetting of initial conditions (RIC) Q-learning
simulation with parameters estimated for each participant. Shadowed mar-
gins correspond to the standard error of the mean. The dotted vertical line
marks the 100th trial in the block.
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Predicting Outcome Primacy in Different
Experimental Paradigms

The participants in the experiment exhibited outcome primacy,
whose magnitude can be quantified as the difference between the
probabilities of choosing the risky choice when the outcome of the
first risky choice is H and that probability when the outcome of
the first risky choice is L (�Adata � AH � AL � 16 	 4%). In this
section, we consider the contributions of two main characteristics
of the experimental schedule to the outcome primacy: (a) the fact
that in each trial, only the payoff of the chosen alternative was
known to the participant, also known as obtained payoff, and (b)
the fact that the expected returns from the two alternatives were
approximately equal.

In order to estimate the contribution of the obtained payoff
paradigm to outcome primacy, we simulated the RIC Q-learning
model in a forgone payoff paradigm in which both the obtained
outcome from the chosen alternative and the foregone outcome
from the nonchosen alternative are known to the participant after
each trial. Averaging over the problem sets, we found that the
magnitude of outcome primacy in the simulation of the forgone
payoff paradigm is �Aforgone � 5 	 3%, which is significantly
smaller than Adata, t(175) � 3.3, p � 1·10�3, 95% CI [4.6%,
18.2%], g � 0.50. Thus, the contribution of adaptive sampling to
outcome primacy is substantial, and we predict that the magnitude
of the outcome primacy in a forgone payoff paradigm would be
substantially lower than in an obtained payoff paradigm.

To test for the contribution of equal expected rewards to out-
come primacy, we repeated the simulations of the RIC Q-learning
model for each of the participants, while varying the value of the
safe alternative, M, according to M' � M � q|M|. The parameter
q is a measure of the deviation of the reward schedule from equal
returns. The original reward schedule of approximately equal
returns corresponds to q � 0, whereas a positive (negative) value
of q indicates that the value of the safe alternative is larger
(smaller) than the expected average reward of the risky alternative.

The top panel in Figure 7 depicts the probability of choosing the
risky choice given that the outcome of the first trial was high (H,
blue) or low (L, red) as a function of q. The lower panel depicts the
difference between these two curves. The solid circles in both plots
denote the empirical values, AL (red in top panel), AH (blue in top
panel), and Adata (black in bottom panel). The results of these
simulations predict that the magnitude of outcome primacy should
be maximal when the two alternatives have approximately the
same return. Nevertheless, substantial outcome primacy is ex-
pected in all the values of q that we studied (�1 � q � 1).

RIC Model as Nonstationary Learning

The magnitude of the learning rate determines the speed–
accuracy trade-off in learning. Therefore, the time-dependent
learning rate, in which the rate is initially high and later low, is
common in machine learning in general and reinforcement learn-
ing in particular (Sutton & Barto, 1998). In line with this frame-
work, the RIC model is mathematically equivalent to an AIC
model, in which the learning rate changes according to the follow-
ing rule: �1(a) � 1 and �t � � for t � 1, where � is a constant and
�t(a) is the learning rate after t choices of alternative a. Consistent
with this idea, the resetting of initial conditions ensures that after

a single trial, the estimated action values are in the ballpark of the
true values, enabling fast convergence to the true values. By
contrast, an arbitrary initial value may be far from the true value,
resulting in a slow convergence of the algorithm. We postulate that
this might be the rationale behind this cognitive strategy. Further-
more, for a deterministic action–outcome relation, resetting would
be the optimal policy for estimating the action value correctly and
quickly.

To further test the validity of the RIC Q-learning model, we
tested whether other models incorporating a time-dependent learn-
ing rate could explain the behavioral data better. In particular, we
focused on power-law learning of the form �t � 1/t� because it
guarantees convergence of the estimated action value to its true
value under general conditions if 1 � � � 2 (Sutton & Barto,
1998). We found that the likelihood of the power-law model is
lower than that of the RIC Q-learning model, and qualitatively, the
resulting behavior does not capture the primacy effect (not shown).

Nevertheless, it is likely that the RIC Q-learning model is at best
a coarse approximation of the true learning strategy. Therefore,
more accurate models should take into account time-dependent
changes in the adaptation rule as well as in the action selection
rule. However, an accurate description of the dynamics of these
rules is difficult because of the heterogeneity in learning between
different participants, because our only access to the subjective

Figure 7. The predicted dependency of the outcome primacy effect on
reward schedule according to the simulation of the resetting of initial
conditions Q-learning model with parameters of each participant estimated.
Top panel depicts the probability of choosing the risky alternative given
that the outcome of the first risky choice was either high (H, blue) or low
(L, red), as a function of the value of the parameter q, which controls the
value of the safe alternative according to M' � M � q|M|, where M is
the original value in the empirical data, and M= is the safe value used in the
simulation. Horizontal and vertical gray lines correspond to choice indif-
ference (p � .5) and equal returns (q � 0), respectively. Bottom panel
depicts the difference between the two curves in the top panel. The solid
circles denote the empirical values of AL, AH (red and blue in top panel) and
Adata (black in bottom panel). Simulation was conducted over 20 repeti-
tions of the original experiment (200 participants, 12 blocks each) with the
parameter q varying between �1 and 1 in steps of 0.05 (total 41 values).
The error bars corresponds to the simulation and data standard error of the
mean.
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values is via their binary choices and because these rules could be
task dependent.

Beyond the RIC Q-Learning Model

One limitation of RIC Q-learning is that it implicitly assumes
that consecutive blocks are independent and that prior expectations
play no role in the model. However, this is only an approximation
of the behavior. To see this, we computed the probabilities of
choosing the risky alternative in the second trial following a risky
choice in the first trial, conditioned on the outcome of the first trial
(H or L). According to the RIC model, these probabilities are
determined by the parameter ε in the action selection rule and are
independent of the outcome of the first trial. We found that these
probabilities are statistically different: 21 	 4% and 14 	 4%,
after H and L, respectively, t(186) � 2.03, p � .043, 95% CI [0%,
12.6%], g � 0.30. This result might indicate that prior expectations
of the participants also influence their choice behavior in a way
that is not predicted by the RIC Q-learning model.

Outcome Primacy and Other Forms of Primacy

The long-lasting effect of the first outcome, which we denoted
as outcome primacy, is reminiscent of other forms of primacy
in psychology (Mantonakis et al., 2009), where “earlier data
have more impact [on behavior] than later data” (Peterson &
DuCharme, 1967, p. 1). For example, in memory recall tasks, the
probability of recalling the first item in a list is higher than the
probability of recalling subsequent items (Murdock, 1962). Simi-
larly, in multiple-choice tasks, in which opinion is based on
one-shot experience per option, such as in wine tasting, the first
option is more likely to be chosen (Mantonakis et al., 2009).
Although the relation between the above examples of primacy and
outcome primacy is unclear, we hypothesize that outcome primacy
and primacy in belief-updating tasks, such as jurors’ decision after
a sequence of argumentative speeches or the stating of a person-
ality impression after a sequence of words describing personality
traits (Asch, 1946; Cromwell, 1950; Lund, 1925; Peterson &
DuCharme, 1967; Stone, 1969), can be explained using a similar
theoretical framework.

Belief-updating tasks resemble repeated choice tasks in the fact
that participants respond after being provided with a sequence of
evidence. However, in contrast to the quantitative nature of the
sequence of rewards in repeated choice tasks, the evidence in
belief-updating tasks can be qualitative and not easily comparable.
Order effects in the belief-updating tasks have been previously
modeled using the belief-adjustment model, in which evidence,
despite its qualitative nature, is converted to a numerical reinforce-
ment and is used to update the value associated with the evidence’s
source, in a manner very similar to Q-learning (Hogarth & Ein-
horn, 1992). An important difference between the belief-
adjustment model and the RIC Q-learning model is that in the
former model, the representation of the first experience is nonde-
caying, whereas in the latter model, first experience resets the
initial conditions. This difference in the models manifests in a
different prediction: primacy in the belief-adjustment model is
predicted to be everlasting, whereas primacy in the RIC Q-learning
model is predicted to be a transient, albeit possibly long-lasting,
phenomenon. We are unaware of studies of primacy in long

belief-updating tasks (we demonstrated outcome primacy in a task,
in which the two sequences of evidence are composed of tens of
trials). However, in a memory recall task, the magnitude of pri-
macy has been shown to decrease with the length of the list
(Murdock, 1962).

Researchers have also suggested primacy emerges because par-
ticipants pay less attention to successive items of evidence (An-
derson, 1981). In the framework of the Q-learning model, this
attention decrement can be modeled as a decrease in the learning
rate. As discussed above, the RIC hypothesis is a simple example
of a time-dependent learning rate, in which the learning rate is
initially high and is lower in successive trials.

Conclusion

Learning from experience is one of the most compelling aspects
of human cognition. Reinforcement learning provides a computa-
tional framework for studying learning from experience by using
past actions and their outcome to estimate action values, which in
turn are used to direct future actions. Nevertheless, when learning
starts, neither previous actions nor outcome are available, and thus
initial conditions should be defined. In this article, we described
the long-lasting contribution of the first experience to behavior, a
phenomenon we termed outcome primacy. The long time scale
associated with this effect indicates that behavior does not con-
verge to a steady state within 100 trials, and thus the aggregate
behavior reported in experiments may not reflect the asymptotic
expected behavior. Outcome primacy can be understood in the
framework of RL if we assume that initial conditions are reset by
the outcome of first experience. We suggest that the resetting of
the initial condition is a general trait of human and animal operant
learning, which may be related to other forms of primacy and
should not be overlooked when modeling and predicting learning
from experience.
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