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The probability of choosing an alternative in a long sequence of
repeated choices is proportional to the total reward derived from
that alternative, a phenomenon known as Herrnstein’s matching
law. This behavior is remarkably conserved across species and
experimental conditions, but its underlying neural mechanisms still
are unknown. Here, we propose a neural explanation of this
empirical law of behavior. We hypothesize that there are forms of
synaptic plasticity driven by the covariance between reward and
neural activity and prove mathematically that matching is a generic
outcome of such plasticity. Two hypothetical types of synaptic
plasticity, embedded in decision-making neural network models,
are shown to yield matching behavior in numerical simulations, in
accord with our general theorem. We show how this class of
models can be tested experimentally by making reward not only
contingent on the choices of the subject but also directly contin-
gent on fluctuations in neural activity. Maximization is shown to be
a generic outcome of synaptic plasticity driven by the sum of the
covariances between reward and all past neural activities.

neuroeconomics � decision making � rational choice theory �
reinforcement learning

There is a long tradition of experiments on decision making in
which a subject chooses repeatedly between alternative options

and is rewarded according to her choices. In many such experi-
ments, choosing an alternative makes it less likely to yield a reward
in the future, corresponding to the economically relevant case of
diminishing return. The aggregate behavior in these experiments
can phenomenologically be described by the ‘‘matching law.’’ This
empirical law states that choices are allocated such that the accu-
mulated rewards harvested from an alternative, divided by the
number of times it has been chosen, is equal for all alternatives. For
each alternative, we will define income as the accumulated rewards
harvested from it, investment as the number of times it has been
chosen, and return as income divided by investment. According to
the matching law, the return is equal for all alternatives.† Rational
choice theory predicts that behavior should maximize reward, but
in many contexts, matching behavior is not equivalent to maximi-
zation. Indeed, the matching law has been invoked to explain
seemingly irrational behaviors such as addiction (4).

In an experiment where a subject, animal, or human is placed
on a reinforcement schedule, it takes some time before its choice
frequencies converge to those predicted by the matching law (5,
6). The dynamics of this convergence has been modeled math-
ematically by a number of researchers. In these models, the
subject makes choices stochastically, as if by tossing a biased
coin.‡ The choice probabilities evolve in time based on the
rewards received, in a process of learning or adaptation. Over
long time scales, the choice probabilities converge to values
satisfying the matching law (4, 5, 10).

Although the present work is another attempt at a theory of how
matching behavior is learned, its goals are very different from those
of previous theories. We seek to describe matching not simply at the
behavioral level, but to explain it in terms of hypothetical events
taking place at synapses. It is widely believed that some forms of

learning are due, at least in part, to long-lasting modifications of the
strengths of synapses. Here, we hypothesize that such synaptic
plasticity is responsible for the behavioral changes that are observed
as animals learn to match.

What properties of synaptic plasticity are likely to lead to
matching behavior? Addressing this question seems like a formi-
dable task, in particular because little is known regarding the neural
circuit underlying decision making. Remarkably, it is possible to
prove a mathematical theorem that gives a broad answer to this
question. According to the theorem, matching is a generic outcome
of synaptic plasticity that is driven by the covariance between
reward and neural activity. In statistics, the covariance between two
random variables is the mean value of their product, provided that
one or both has zero mean. Accordingly, covariance-based plasticity
arises naturally when synaptic change is driven by the product of
reward and neural activity, provided that one or both have zero
mean. Either signal can be made to have zero mean by measuring
it relative to its mean value.

An important implication of the theorem is that the details of the
neural circuit for decision making are not important for matching
behavior. This statement holds provided that it is truly the covari-
ance that drives synaptic plasticity. This assumption is violated, for
example, if plasticity is based on the product of reward and activity
without subtracting mean values. In this case, matching behavior
may hold for specific neural circuits satisfying quite restrictive
assumptions, but the generality of the phenomenon is lost.

If matching indeed is driven by the covariance between reward
and neuronal activity, then making reward contingent directly on
neural activity is expected to lead to significant deviations from
matching behavior. We demonstrate this prediction in a specific
decision-making neural circuit.

Above we contrasted matching with maximizing. Can maximiz-
ing behavior also be produced by a synaptic plasticity rule driven by
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†Herrnstein’s operant matching should not be confused with ‘‘probability matching,’’ a
behavior in which the probability of choosing an alternative is proportional to the return
from that alternative. Usually, Herrnstein operant matching and probability matching are
inconsistent. Operant matching and probability matching are observed in very different
experimental settings. Operant matching is typically studied with diminishing return
schedules, with low probabilities of reward. In contrast, probability matching emerges in
fixed-return schedules, such as the ‘‘two-armed bandit.’’ Typically, in every trial, one of the
alternatives would yield a reward if chosen and, thus, the subject is rewarded in a high
fraction of the trials (1, 2). Recent two-armed bandit studies suggest that probability
matching may be a transient phenomenon, because longer experiments yield behavior
that may be more consistent with operant matching (3).

‡In reinforcement learning theories, it is common to assume that choice behavior is
statistically independent from trial to trial (1, 7). In fact, the temporal correlations between
choices are weak in many experimental conditions, so that this assumption is reasonable
(1, 5, 8, 9).
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the covariance of reward and neural activity? The answer is yes,
provided that the rule includes not only the covariances of reward
with neural activity in the immediate past, but also with neural
activities that accompanied choices further in the past.

Models for learning that are based on the covariance between
reward and choice are common in economics and are used phe-
nomenologically to explain human behavior in strategic environ-
ments (7, 11, 12). In computer science, such learning algorithms are
often used for adaptive control (13). These models are formulated
at the behavioral level of choices and rewards. Our hypothesis can
be viewed as the extrapolation of these models to the neural level.

Results
Synaptic Plasticity and Reward. In the introduction, it was hypoth-
esized that animals learn matching behavior because reward influ-
ences plasticity at synapses in their brains. The precise nature of this
influence is not well understood. Reward may be encoded in the
overall level of a neuromodulator. For example, some studies
suggest that the neuromodulator dopamine signals the mismatch
between actual reward and expected reward (14, 15). According to
other studies, dopamine codes only for the positive mismatch
between the actual and expected rewards (16–18), and it has been
speculated that other neuromodulators, such as serotonin, report
the negative mismatch between actual and expected rewards (19).
The effects of dopamine are spatially diffuse for a number of
reasons. First, midbrain dopamine neurons send long axons that
arborize widely over almost the entire brain. Second, dopamine can
‘‘spill’’ out of the synapses where it is secreted and affect extrasyn-
aptic targets. Third, the dopamine neurons are thought to be a fairly
homogeneous population in their response properties (20). Thus,
dopamine may be considered as a global signal shared by many
synapses.

It is well known that neural activity changes the strength of
synapses in the brain. For example, in Hebbian plasticity, the
covariation in the firing rates of coupled neurons leads to poten-
tiation of the synapse that connects them. In other cases, the
activation of the presynaptic neuron or postsynaptic neuron is
sufficient to induce synaptic changes (21). However, it is not well
understood how global neuromodulatory signals that encode re-
ward interact with the local neural activity signals to modulate
synaptic efficacies. According to one popular idea, dopamine gates
local plasticity rules (22). One can imagine a number of specific
implementations of this general idea. For example, the change �W
in synaptic strength W could be given by

�W � ��R � E�R��N , [1a]

where � is the plasticity rate, R is the reward harvested in that trial,
E[R] is the average of the previously harvested reward, and N is
some measure of neural activity. For example, N could correspond
to the presynaptic activity, the postsynaptic activity or the product
of presynaptic and postsynaptic activities. In the latter case, the
plasticity rule of Eq. 1a can be called Hebbian, because this synaptic
learning rule depends on the product of the activities of the
presynaptic and postsynaptic neurons. The sign of the synaptic
change depends on whether the reward R is greater or less than its
expected value E[R].

Other biologically plausible implementations of reward-
modulated plasticity are as follows:

�W � �R�N � E�N�� [1b]

�W � ��R � E�R�� ��N � E�N�� . [1c]

The next section will show that the plasticity rules of Eqs. 1 a–c
share the common feature that they are driven by the covariance
between reward and neural activity.

Covariance Between Reward and Neural Activity. In general, the
dynamics of Eqs. 1 a–c are difficult to analyze, in part because they
are stochastic. If the right-hand side of these equations is replaced
by their expectation value, then a deterministic ‘‘mean field’’
approximation is obtained. In general, a stochastic dynamics often
resembles its mean field approximation, although there can be
differences (23). Typically the mean field approximation is better as
the plasticity rate � becomes small.§

Our theoretical analysis will focus on the mean field approxima-
tions to Eqs. 1 a–c. For all these plasticity rules, the expectation
value of the right-hand side is proportional to Cov[R, N], the
covariance between R and N. Therefore, the mean field approxi-
mation to Eqs. 1 a–c takes the form

�W � �Cov�R , N� . [2]

For this reason, we say that the plasticity rules of Eqs. 1 a–c are
driven by the covariance between reward and neural activity. At
a steady state of Eq. 2, the covariance vanishes, Cov[R, N] � 0.
In the next sections, we show that vanishing covariance is
equivalent to the matching law under quite general conditions.
It follows that the steady state of the mean field dynamics Eq. 2
obeys the matching law.

What Matching Implies About Neural Activity. A fundamental as-
sumption of our theory is that neural activity is a stochastic hidden
variable for the reward schedule. Ordinarily, reward depends on
choice behavior but has no direct dependence on neural activity:

Assumption 1. Reward R is independent of neural activity N, when
conditioned on the choice A.¶

To understand the meaning of this assumption, it is helpful to
imagine a situation in which it is violated. For example, suppose that
a neurophysiologist records neural activity N in an animal and
makes reward contingent not only on the animal’s behavior, but also
on N. This reward schedule would invalidate Assumption 1 (as
discussed in Experimental Predictions). More typically, R has no
direct dependence on N and Assumption 1 is valid. If the neural
activities at different trials are correlated, then under some condi-
tions, Assumption 1 also will be violated. However, it is possible for
R to have an indirect dependence on N through A. Such a
dependence would typically cause Cov[R, N] to be nonzero, because
the covariance is a measure of dependence between two random
variables.

But the following theorem shows that this covariance vanishes,
provided that the animal behaves in a special way according to the
matching law. To see this result, recall that the matching law
corresponds to equality of returns from the two choices. The return
from choice 1 can be written as the conditional expectation E[R�A �
1] and, similarly, for the return from choice 2. Therefore, the
matching law can be written as E[R�A � 1] � E[R�A � 2], which is
how it appears in the following theorem.

Theorem 1. Suppose that Assumption 1 is satisfied. If E[R�A � 1] �
E[R�A � 2], then Cov[R, N] � 0.

Proof: If E[R�A � 1] � E[R�A � 2] � E[R], then E[R�N � n] �
E[R] for all n. It follows that E[�R�N � n] � 0, where �R � R � E[R].
Thus, E[�R�N] � 0 or, equivalently, Cov[R, N] � 0.

A more intuitive proof is possible in the special case where R is
binary, taking on the values 0 and 1. Then the matching law E[R�A �
1] � E[R�A � 2] is equivalent to independence of R and A and,

§� also can be viewed as a time step of synaptic change and, therefore, the limit of small �

also is referred to as continuous time approximation (24).

¶In fact, Assumption 1 can be relaxed to say that the conditional expectation E[R�A] is
independent of neural activity N.
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therefore, implies that R and N are independent, in which case their
covariance must vanish.

What Neural Activity Implies About Matching. According to Theorem
1, for any animal behaving according to the matching law, the
covariance between reward and the activity of any neuron in its
brain is equal to zero. Now consider the converse of Theorem 1.
Suppose that Cov[R, N] vanishes. Can we conclude that behavior
satisfies the matching law? Theorem 2 shows that this conclusion is
valid, provided that we make a further assumption.

Assumption 2. E[N�A � 1] and E[N�A � 2] are different from E[N].
This assumption is reasonable if N is the activity of a neuron in

a brain area that is involved in making the choice. Because N is one
of the causes of A, we expect its average value to be different in trials
when the animal chooses A � 1, and trials when it chooses A � 2.�
Given both Assumptions 1 and 2, matching behavior becomes a
necessary and sufficient condition for the vanishing of the covari-
ance of reward and neural activity.

Theorem 2. Suppose that Assumptions 1 and 2 are satisfied. Then
Cov[R, N] � 0 if and only if E[R�A � 1] � E[R�A � 2].

Proof: Define the deviation �N � N � E[N]. Then E[�N] � 0
by construction, so that

E��N �A � 1�Pr�A � 1� � E��N �A � 2�Pr�A � 2� � 0.

[3]

Using Assumption 1, we also can write

Cov�R , N� � E�R �A � 1�E��N �A � 1�Pr�A � 1�

� E�R �A � 2�E��N �A � 2�Pr�A � 2� .

[4]

Combining Eqs. 3 and 4 yields,

Cov�R , N� � E��N �A � 1�Pr�A � 1�

� �E�R �A � 1� � E�R �A � 2�� . [5]

By Assumption 2, E[�N�A � 1] and E[�N�A � 2] are nonzero.
Because the choice probabilities Pr[A � 1] and Pr[A � 2] must sum
to one, it follows that they are nonzero from Eq. 3 and, hence,
E[�N�A � 1]Pr[A � 1] is nonzero. Then Eq. 5 implies that
Cov[R, N] � 0 if and only if E[R�A � 1] � E[R�A � 2].

For a more intuitive argument, consider the special case where
R, N, and A are binary variables, taking on the values 0 and 1. Then
the theorem states that R and N are independent if and only if R and
A are independent. In other words, the only way to break the chain
of dependences N3A3R is to break the second link, because the
first link cannot be broken by Assumption 2.

Decision making is often studied in situations in which choosing
an alternative makes it less likely to yield a reward in the future,
corresponding to the economically relevant case of diminishing
return. This principle is commonly implemented by using the
concurrent variable-interval (VI) reward schedule (25) (see Sup-
porting Text, which is published as supporting information on the
PNAS web site). In Theorems 1 and 2, the conditional expectations
E[R�A � 1] and E[R�A � 2] played an important role. It may not be
obvious how to define these quantities for reward schedules such as
the concurrent VI, in which reward depends not only on the current
choice but also on past choices. For example, if we assume that a

subject makes decisions by tossing a biased coin, to define
E[R�A � a] we assume that the subject already has made an infinite
number of choices by tossing a biased coin with probabilities
Pr[A � 1] and Pr[A � 2]. Now the subject chooses A � 1, and the
expected value of reward is E[R�A � 1].** Because of the history
dependence, E[R�A � 1] and E[R�A � 2] are not fixed but are
actually functions of the choice probabilities Pr[A � 1] and
Pr[A � 2]. This dependence allows the animal to achieve matching
behavior by allocating its choices appropriately. If the returns were
fixed and independent of the animal’s choices, as in the two-armed
bandit schedule, and also different from each other, then it would
be impossible to achieve matching behavior.

According to Theorem 2, under quite general conditions, match-
ing behavior emerges if and only if the covariance of reward and
neural activity vanishes. Consequently, the steady state of the mean
field approximation of the synaptic plasticity rules of Eqs. 1 a–c
corresponds to matching behavior. This result suggests that match-
ing is a generic outcome of the plasticity rules, although there is no
formal mathematical guarantee. Whereas matching is a steady state
of the mean field approximation, it might not be a stable steady
state. Furthermore, the stochastic dynamics might deviate signifi-
cantly from its mean field approximation. Because of these math-
ematical uncertainties, it is helpful to study numerical simulations
of particular examples of decision-making networks, as is done
below.

Example: Matching Behavior in a Neural Network Model
In this section, we study choice behavior in a particular example of
a decision-making network. We demonstrate matching behavior
when the plasticity rule is driven by the covariance of reward and
neural activity. We show that substantial changes to the properties
of the network and the plasticity rule have no observable effect on
matching behavior, as long as the plasticity rule is driven by the
covariance of reward and neural activity. In contrast, a change to
the plasticity rule that violates the covariance rule leads to sub-
stantial deviations from matching behavior.

Decision making is commonly studied in experiments, in which
the subject repeatedly chooses between two actions, each corre-
sponding to a sensory alternative. For example, in recent experi-
ments with primates, the stimuli are two visual targets, and the
actions are saccadic eye movements to the targets (5, 26). We
demonstrate matching behavior with a minimal model in which the
two stimuli are represented by two populations of sensory neurons,
S1 and S2, and the two actions are represented by two populations
of premotor neurons, M1 and M2 (Fig. 1A). Input from the sensory
neurons determines the activity of the premotor neurons via
Ma � Wa�Sa, where Wa is the efficacy of the synaptic connection
from the sensory to the premotor population that correspond to
alternative a. Alternative 1 is chosen in trials in which M1 � M2.
Otherwise, alternative 2 is chosen. The comparison could be
performed by a winner-take-all network with lateral inhibition (27,
28) but is not explicitly modeled here. The source of stochasticity
in this model is Gaussian trial to trial fluctuations in S1 and S2. After
each action, the synapses are changed according to the plasticity
rule of Eq. 1b with N � Sa, �Wa � � R (Sa � E[Sa]).

The two-alternative concurrent VI schedule is controlled by two
parameters, which are called baiting probabilities. We simulated the
model with the concurrent VI schedule, where the baiting proba-
bilities switch every 150 trials. Fig. 1B depicts the cumulative choice

�In principle, this assumption could be tested empirically by recording neural activity N in
an animal making choice A, and estimating E[N�A�1], E[N�A�2], and E[N] by averaging
over many trials. In practice, the deviations between these quantities might be small,
because the choice might depend only very weakly on any single neuron.

**This definition can be formalized and generalized by assuming that the rewards are
generated by a Markov decision process (MDP). The concurrent VI schedule is an example
of an MDP in which the state variable specifies whether the targets are baited. If the
decisions in an MDP are generated by the tosses of a biased coin, then the rewards are
generated by an ordinary Markov process, which converges to an equilibrium distribu-
tion under mild assumptions. Then E[R�A � 1] is defined as the expected value of the
reward after choosing the state of the MDP from the equilibrium distribution and then
choosing A � 1.
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of alternative 2 as a function of the cumulative choice of alternative
1 (blue line). Two feature of this simulation are notable. First, the
model appears to adjust its behavior to changes in the rates of
the reward (blue circles). Second, the blue line generally parallels
the black lines that indicate the ratio of rewards in the correspond-
ing block of trials with fixed baiting probabilities, in agreement with
the matching law. Matching behavior is quantified further in Fig. 1C
(blue circles) when we study choice behavior in concurrent VI
schedule with fixed baiting probabilities. Each blue circle corre-
sponds to one simulation in which the baiting probabilities of the
two targets were kept fixed. The fraction of trials in which alter-
native 1 was chosen is plotted versus the fractional income earned
from action 1 (the ratio of the income from action 1, divided by the
sum of incomes from both actions). The model obeys the matching
law essentially perfectly, as demonstrated in the correspondence
between the simulation results and the diagonal (solid line).

If the emergence of matching behavior in the model is a
consequence of the covariance-based synaptic plasticity rule, then,
in general, other plasticity rules are not expected to lead to
matching behavior. For example, we replaced the plasticity rule of
Eq. 1b with the plasticity rule �Wa � � R Sa. With this plasticity rule,
the change in synaptic efficacy is proportional to the product of
reward and neural activity. However, because neither the reward R
nor the neural activity Sa has zero mean, this plasticity rule cannot
be considered as a covariance rule. Simulating the network of Fig.
1A with this plasticity rule in the same conditions leads to large
deviations from matching behavior (Fig. 1C, black triangles).

In contrast, as long as the plasticity rule is driven by the
covariance of reward and neural activity, other changes in the
properties of the decision-making network are not expected to have
an effect on matching behavior. We replaced the population model
of Fig. 1A with a more biophysical model of the same architecture,
where we explicitly modeled the neurons in each population and the
synapses between them. More formally, let Sj

a be the activity of
neuron j in the sensory population a, measured as the number of
spikes in a relevant time window. Each spike count Sj

a is assumed
to be drawn from a Poisson distribution with a constant mean. The
synaptic input to premotor neuron Mk

a is given by the weighted sum
Ik
a � 	jWkj

a Sj
a,where Wkj

a is the efficacy of the synaptic connection
from neuron j in sensory population a to neuron k in premotor
population a. The spike count Mk

a of premotor neuron k in
population a also is assumed to be drawn from a Poisson
distribution with mean Ik

a. In general, we do not assume sym-
metry between the two alternatives and the number of neurons
in the different populations may be different. The action is
chosen by comparing the activities of the two premotor popu-
lations. If the average number of spikes per neuron in premotor
population 1 is larger than that of population 2, alternative 1 is
chosen. Otherwise alternative 2 is chosen. After each action, the
synapses are changed according to the plasticity rule of Eq. 1a,
where N is the product of the activities of the presynaptic sensory
neuron, and the postsynaptic premotor neuron in a Hebbian-like
fashion, �Wkj

a � �(R � E[R])�Sj
a�Mi

a. E[R] is computed as the
running average of the past few rewards. Simulating this model
in the same concurrent VI schedule leads to matching behavior
that is indistinguishable from that seen in the more abstract
model (Fig. 1C, red squares).

The success of the covariance-based models in generating match-
ing behavior in numeric simulations substantiates our hypothesis
that matching behavior results from synaptic plasticity that is driven
by the covariance of reward and neural activity.

Experimental Predictions
Our theorem states that matching behavior occurs if and only if
Cov[R, N] � 0. We hypothesize that matching behavior results from
a synaptic plasticity rule that is driven by the covariance of reward
and neural activity. According to this perspective, behavior adapts
because synapses in the brain perform statistical computations.
However, a very different class of matching models has been
proposed in which the brain performs computations that are
‘‘financial.’’ A common conceptual explanation for operant match-
ing is known as melioration (4). The basic idea is that subjects keep
track of the return of each alternative and stochastically shift their
behavior to alternatives that provide a higher return. Thus, in a
diminishing-return experiment, this behavior would equalize the
returns of the different alternatives. According to one implemen-
tation of this idea, the decision maker explicitly measures the
incomes from each of the two targets, calculates the ratio of the
incomes, and chooses by tossing a biased coin with odds given by
this ratio (5, 12). By construction, the choice probabilities are in the
same ratio as the incomes, so the matching law is satisfied. This
model is similar to the linear reward-inaction algorithm (13) that
has been proposed by economists to explain human behavior (11)
and is commonly used in machine learning. An alternative phe-

A
S S

W W

M M

action

1

21

1

2

2 B

D

0 200 400
0

100

200

300

0 0.5 1
0

0.5

1

cumulative choice 1 

cu
m

ul
at

iv
e 

ch
oi

ce
 2

fr
ac

tio
na

l c
ho

ic
e 

1

fractional income 1fractional income 1

C

0 0.5 1
0

0.5

1

Fig. 1. Matching behavior in a reinforcement learning model. (A) A decision-
making network consisting of two populations of sensory neurons Sa, corre-
sponding to the two targets, and two populations of premotor neurons Ma,
corresponding to the two actions. Alternative 1 is chosen in trials in which
M1 � M2. Otherwise, alternative 2 is chosen (see Example in Results). (B and C)
Matching behavior in a concurrent VI schedule. (B) Cumulative choice of
alternative 1 versus cumulative choice of alternative 2 (blue). The baiting
probabilities switched every 150 trials (blue circles). Black lines show the
average ratio of incomes within each block (ratio of baiting probabilities here:
1:1, 1:6, 3:1, 1:1, 1:8, and 6:1). (C) The probability of choice as a function of
fractional income. Each point corresponds to one experiment with fixed
baiting probabilities. The diagonal is the expected behavior from the match-
ing law. Blue circles, population model with a covariance plasticity rule. Black
triangles, population model with a noncovariance plasticity rule. Red squares,
Poisson model. (D) Deviations from matching behavior by making reward
directly contingent on neural activity. The probability of choice as a function
of fractional income in a concurrent VI schedule with a covariance plasticity
rule, Eq. 1b. Circles, matching behavior emerges if reward is contingent on
action only. Triangles, the concurrent VI schedule is modified so that harvest-
ing reward also requires that Slos � T (see Experimental Predictions). Simula-
tion parameters: Reward was delivered according to a concurrent VI schedule
with a fixed sum of baiting probabilities, 0.3. Every symbol in C and D
corresponds to 2,000 trials of fixed baiting probabilities, and results are the
average over the last 1,000 trials. Population model: Synaptic plasticity rate
� � 0.2; activity of the Sa neurons is drawn from a Gaussian distribution with
mean 1 and a coefficient of variation � � 0.1. Threshold T in D is T � 1.1. Initial
conditions in all simulations Wa(t � 1) � 1. Poisson model: Sensory populations
1 and 2 contain 25 and 50 neurons, respectively; premotor populations 1 and
2 contain 10 and 25 neurons, respectively. Spike count is drawn from a Poisson
distribution with a mean of 10 for the sensory neurons and Ik

a (see text) for
the premotor neurons. Synaptic plasticity rate � � 10�4; average return is
calculated with an exponential filter of width 50 trials. Initial conditions, Wkj

a

(t � 1) � 0.01.
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nomenological model for matching has been proposed in which the
difference of the two incomes, rather than the ratio, determines the
bias of the stochastic choice (29). Because the mathematical form
of the matching law is divisive, this dynamics leads to approximate
matching behavior only in a restricted range of parameters. An
explicit neuronal model for decision making that calculates returns
by using synaptic plasticity recently has been proposed (30).

A common feature of these models is the implicit assumption that
there exists a learning mechanism that is driven by choices and
rewards, which calculates financial quantities, and a source of
stochastic neural activity that translates the financial quantities into
a probability of choice. Because these models generate matching
behavior, by our theorem, the covariance of reward and the
stochastic neural activity vanishes in the brain of such a decision
maker. However, learning is not driven by this covariance, as it is
in our model.

How Can a Covariance-Based Plasticity Model Be Distinguished
Experimentally from the Financial Models? Consider a reward sched-
ule in which reward is made directly contingent on fluctuations in
the stochastic neural activity. This experiment could be done by
measuring neural activity in a brain area involved in decision
making by using microelectrodes or brain imaging and making
reward contingent on these measurements and on actions. This sort
of contingency has been used by neurophysiologists, although not
in the context of operant matching (31, 32). In our model, such a
contingency would lead to violation of the matching law. This
violation is because our theorem depends on Assumption 1, that
reward depends on neural activity only through actions. Violation
of Assumption 1 typically will break the equivalence of vanishing
covariance and matching behavior, because our theorems are no
longer valid.

To illustrate this point, we have performed numerical simulations
of the decision-making network of Fig. 1A with the plasticity rule
of Eq. 1b, while making reward contingent also on neural activity.
We assume that S1 and S2 are recorded in the decision-making
circuit. Let Slos be the activity of the ‘‘losing’’ sensory neuron (the
neuron corresponding to the nonchosen action). The concurrent VI
schedule is modified so that harvesting reward also requires that
Slos � T, where T is a predefined threshold. The result of such a
contingency on neural activity is a shift to ‘‘undermatching’’ be-
havior (black triangles), which means that the ratio of choice
probabilities is closer to one than the ratio of incomes (compare
with the control case where reward is contingent only on action,
blue circles). The larger the threshold is, the larger the deviation
from matching behavior (data not shown). The nature of deviation
from matching depends not only on the characteristics of the
contingency of reward on neural activity in the reward schedule but
also on the properties of the decision-making network.

Consider now a financial model in which financial computations
and probabilistic choice are implemented in two separate brain
modules. One brain module records past reward and choices to
calculate quantities such as income and return, and the other brain
module utilizes these quantities to generate stochastic choice in
accordance with the matching law. In that case, if reward is
contingent on neural fluctuations in the choice module, the finan-
cial module still should operate properly. The contingency on
neural fluctuations effectively may change the reward schedule and,
hence, change the allocation of choices, but because the computa-
tion of the financial quantities is not compromised, matching
behavior would be retained.

The assertion that matching behavior in financial models is
robust to making the reward contingent on neural activity relies on
the assumption that the computation of financial quantities are not
affected by neural fluctuations. One subtlety concerning this pre-
diction should be mentioned. Any plausible learning process in the
brain is likely to be affected by some stochastic neural activity.
However, if the stochasticity in the learning process is uncorrelated

with the stochasticity of the decision-making process, as is likely to
be the case if the financial computations and probabilistic choice are
implemented in two separate brain modules, then it is possible, in
principle, to distinguish between our covariance-based model and
financial models, but such experiments require recording the
choice-related fluctuations in neural activity.

Matching and Gradient Learning. In this paper, we have hypothesized
that matching is the result of a plasticity rule that is driven by the
covariance of reward and choice-related neural activity. More
precisely, we have assumed that the change in synaptic efficacy in
a trial is driven by the covariance between the reward harvested in
that trial and the neural activity that generated the choice in that
trial. However, in reward schedules such as concurrent VI, reward
depends not only on the immediate past, but also on choices further
in the past. This dependence leads to the problem of temporal credit
assignment in reinforcement learning (33). The problem can be
solved by a covariance-based plasticity rule that includes neural
activities associated with past choices. In this section, we show that
under certain assumptions, maximization is equivalent to vanishing
of the sum of covariances of reward and past neural activities.

In addition to Assumption 2, our theorem requires the follow-
ing assumptions.

Assumption 3. The joint probability distribution of neural activity
and choice is identical in each trial, that is, from trial to trial, each
draw of (Nt, At) is independent.

From this assumption, it immediately follows that choices at
different trials are independent and, therefore, choice behavior is
characterized by a single parameter p, the probability of choice.

Assumption 4. Reward Rt is independent of neural activity Nt-�, when
conditioned on the choice At-t.

Note the similarity between this assumption and Assumption 1.

Assumption 5. There is a unique stationary distribution of the sequence
of rewards if alternatives are chosen by tossing a biased coin (see
footnote **).

Theorem 3. Suppose that Assumptions 2–5 are satisfied and define
the expected reward U(p) � E[Rt]. Then U
(p) � 0 if and only if
	��0

� Cov[Rt, Nt��] � 0.
The proof of Theorem 3 follows the same route as the proof

of Theorem 2 and appears in Supporting Text.
Thus, under these assumptions, maximizing takes place if and

only if the infinite sum of the covariances of past neural activities
and current reward vanishes. These results raise the intriguing
possibility that matching behavior is a form of bounded rationality.
A plasticity rule that is driven by the covariance between rewards
and the sum of past neural activities is expected to lead to
maximizing, but requires a long memory of past activities, whereas
a plasticity rule that is driven by the covariance between rewards
and recent neural activities is expected to lead to matching behavior
but does not require long memory.

Discussion
In this paper, we have explored the hypothesis that matching is the
result of a plasticity rule that is driven by the covariance of reward
and choice-related neural activity. We hypothesized that the locus
of this plasticity is the synaptic efficacies between neurons.

An experimental test of the hypothesis was proposed: making
reward directly contingent on neural activity and choices. We
predict that such neural contingency could lead to significant
deviations from matching. A plasticity rule that is driven by the
covariance between reward and the sum of past neural activities
may maximize reward.
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Robustness and Fine-Tuning in Covariance Computation. Theorem 2
implies that matching behavior should emerge in very different
decision-making networks, as long as their synaptic plasticity is
driven by the covariance of reward and neural activity. This
conjecture is supported by our numerical simulations demonstrat-
ing matching behavior in networks with different properties. There-
fore, we believe that a plasticity rule based on covariance is robust
in its ability to generate matching behavior independent of the
details of the network in which the synapses are embedded.

Whether plasticity rules like Eqs. 1 a–c indeed exist in the brain
remains to be explored by neurobiological experiments. Even if
synaptic plasticity turns out to be well approximated by Eqs. 1 a–c,
these equations are not expected to be perfectly accurate. There-
fore, it is important to test the effects of small deviations from these
plasticity rules. In particular, if the subtractions of Eqs. 1 a–c are not
completely accurate, then there will be error in the covariance
computation. Although a full exploration of this issue is outside the
scope of this paper, two points that arise from numerical simula-
tions should be mentioned. First, inaccuracies of mean subtraction
lead to a drift in the magnitude of the synapses. This drift can be
prevented by adding a decay term to the synaptic weight or by
normalizing the synaptic efficacies. Second, small inaccuracies of
subtraction produce only small deviations from matching behavior.
This result suggests that small errors in the calculation of the
covariance do not result in catastrophic effects.

It is interesting to note that the issue of covariance computation
also has been important for models of associative memory based on
Hebbian plasticity. In the Hopfield model, synaptic strengths are set
by the covariance of activity in the patterns to be memorized. The
Hopfield model can store a number of memories that scales linearly
with the number of neurons (34). When the mean neural activity is
not properly subtracted, the synaptic efficacies drift and the storage
capacity is significantly reduced. Therefore, proper subtraction of
mean activity levels also is important for the computational func-
tion of Hebbian plasticity.

Potentiation and Depression in Covariance-Based Plasticity. Accord-
ing to our covariance hypothesis, the same neural activity will lead
to either potentiation or depression, depending on whether a
reward was associated with that trial. There is some experimental
evidence suggesting that the neuromodulator dopamine, a plausible
reward signal, may reverse the sign of Hebbian plasticity (for review,
see ref. 22).

Transient Dynamics. In this paper, we have concentrated on the
steady-state matching behavior of a decision-making model whose
synaptic plasticity is driven by reward and neural activity. The
dynamics of the transient convergence to matching behavior is an

area of active research. In an experiment in which the reward
schedule unexpectedly changes, it takes some time before its choice
frequencies converge to those predicted by the matching law (5, 6,
26). This adjustment happens remarkably rapidly. In one study, it
has been estimated that the time scale associated with an adjust-
ment to new baiting probabilities is �10 trials, in which only �3
rewards are delivered (5). Our numeric simulations demonstrated
adaptation in a covariance-based model (Fig. 1B). The time scale
of the adaptation of the model is determined by the properties of
the decision making network, and the plasticity rule, the plasticity
rate �, and the time scale of estimation of E[R] (in Eqs. 1a and 1c).
Importantly, if synaptic weights are purely driven by covariance-
based rules, then the synapses do not have a characteristic efficacy,
and their efficacy is expected to drift in a random-walk fashion. The
time scale of adjustment of the model at any point in time depends
on the current magnitudes of the synapses. Therefore, to make a
quantitative comparison of the time scale of a covariance-based
model with that observed in experiments, a more concrete synaptic
plasticity rule with boundaries on synaptic efficacies is needed.

Gradient Learning. The present work has some mathematical
connections to the REINFORCE class of learning algorithms
used in computer science, which are based on the correlation
between reward and an eligibility trace (35, 36). When
REINFORCE algorithms are applied to neural networks, the
correlation between reward and the eligibility trace may become
a covariance between reward and neural activity. For example,
a REINFORCE algorithm for neural networks with stochastic
synaptic transmission is basically a plasticity rule of the form Eq.
1b, where the variable N indicates whether a synapse has released
neurotransmitter in response to stimulation. It was shown that
this plasticity rule leads to matching behavior in numerical
simulations of a decision-making network (37). The theorems of
the present paper help to explain why.

In the theory of REINFORCE algorithms, it is shown that the
correlation between reward and the eligibility trace is equal to the
gradient of the expected reward. In contrast, our mathematical
analysis does not use the idea of gradient-following. Instead, we
only analyze the steady state of learning (or at least its mean field
approximation), and make no statement regarding convergence. In
general, plasticity rules like Eqs. 1 a–c do not follow the gradient of
expected reward. Under certain assumption, a plasticity rule that is
driven by the covariance of reward and sum of neural activities
approximates a gradient learning rule. In that case, the sum of
neural activities is similar to the eligibility trace in REINFORCE.
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