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Covariance-Based Synaptic Plasticity in an Attractor
Network Model Accounts for Fast Adaptation in Free
Operant Learning

Tal Neiman' and Yonatan Loewenstein'>
Department of Neurobiology, Alexander Silberman Institute of Life Sciences, Interdisciplinary Center for Neural Computation, Edmond and Lily Safra
Center for Brain Sciences, and 2Center for the Study of Rationality, Hebrew University, Jerusalem 91904, Israel

In free operant experiments, subjects alternate at will between targets that yield rewards stochastically. Behavior in these exper-
iments is typically characterized by (1) an exponential distribution of stay durations, (2) matching of the relative time spent at a
target to its relative share of the total number of rewards, and (3) adaptation after a change in the reward rates that can be very fast.
The neural mechanism underlying these regularities is largely unknown. Moreover, current decision-making neural network
models typically aim at explaining behavior in discrete-time experiments in which a single decision is made once in every trial,
making these models hard to extend to the more natural case of free operant decisions. Here we show that a model based on
attractor dynamics, in which transitions are induced by noise and preference is formed via covariance-based synaptic plasticity,
can account for the characteristics of behavior in free operant experiments. We compare a specific instance of such a model, in
which two recurrently excited populations of neurons compete for higher activity, to the behavior of rats responding on two levers
for rewarding brain stimulation on a concurrent variable interval reward schedule (Gallistel et al., 2001). We show that the model
is consistent with the rats’ behavior, and in particular, with the observed fast adaptation to matching behavior. Further, we show
that the neural model can be reduced to a behavioral model, and we use this model to deduce a novel “conservation law,” which is

consistent with the behavior of the rats.

Introduction

When searching for food in their natural environments, ani-
mals typically alternate between foraging locations. The deci-
sion when to leave a foraging location in favor of a different
one is challenging, as natural environments are often stochas-
tic and nonstationary. To understand the neural basis and
computational principles underlying foraging in natural envi-
ronments, psychologists and neuroscientists study foraging-
like behavior in free operant tasks. In these experiments, an
animal moves freely back and forth between different targets
corresponding to different ecological patches, harvesting “re-
wards” that are delivered according to a predefined stochastic
reward schedule (Mark and Gallistel, 1994; Gallistel et al.,
2001, 2007).
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In many of these experiments, whether a response on a
target elicits reward depends on the animal’s previous actions,
such that the probability of reward increases with the time
since the last response on that target, motivating subjects to
switch between targets. The ensuing behavior of subjects is
characterized by three regularities: (1) the distribution of
dwell times in each of the targets is approximately exponential
(Heyman, 1982; Gibbon, 1995); (2) the returns of the two
targets, where return is defined as the number of rewards from
that target per time invested in that target, are often equal;
stated differently, the fraction of the total time subjects spend
in a target matches the fraction of rewards harvested from that
target, a behavior known as “the matching law” (Herrnstein,
1961; Davison and McCarthy, 1988; Herrnstein et al., 2000);
and (3) adaptation to matching behavior can be fast. It has
been estimated that the adaptation rate of rats reaches the
limit set by an ideal Bayesian detector. This fast adaptation has
cast doubt on the applicability of incremental processes (i.e.,
processes in which small changes in behavior are accumulated
over time) to explain adaptation in these experiments (Gallis-
tel et al., 2001, 2007).

Our goal here is to put forward a mechanistic explanation of
these regularities of behavior observed in free operant experi-
ments. We show that a model that is based on attractor dynamics
in which transitions are induced by noise and preference is
formed via covariance-based synaptic plasticity can account for
the experimentally observed behavior. We demonstrate this by
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constructing a biologically plausible model for decision making
in free operant conditions, in which populations of neurons com-
pete for higher activity. We compare this model to the behavior of
rats responding on two levers for rewarding brain stimulation
and show that the model quantitatively accounts for the basic
characteristics of behavior in free operant experiments. More-
over, for the case of two populations of neurons, we analytically
derive a dynamical behavioral model from the neuronal network
model. This model is used to deduce a novel behavioral “conser-
vation law” that is shown to be consistent with the behavior of the
rats.

Materials and Methods

The experimental paradigm

The data analyzed in this paper were provided by Dr. Randy Gallistel
from Rutgers University. The full details of the experimental proce-
dures appear in Gallistel et al. (2001). In short, in each experimental
session, a white male Sprague Dawley rat was placed in a chamber
containing two physically separated levers. In the portion of the ex-
periment that we analyzed, each subject (n = 6) underwent 20 ses-
sions, each lasting 2 h. Pressing a lever yielded a reward in the form of
rewarding brain stimulation according to a concurrent variable-
interval (VI) reward schedule. In this schedule, a target could be
either baited or empty. Once baited, a target remained baited until it
was chosen. When a subject chose a baited target, it was rewarded
immediately and the target became empty. An empty target was re-
baited probabilistically such that the time to rebait was drawn from a
geometric distribution where the time steps were seconds. The reward
schedule was characterized by the two means of the two geometric
distributions, one for each of the two levers. Five different pairs of
means were used in the experiment: (7.1 and 62.5 s), (8.55 and 25.64
s), (12.82and 12.82s), (25.64 and 8.55s), and (62.5sand 7.1 s). These
five pairs corresponded to baiting rate ratios of 9:1, 3:1, 1:1, 1:3, and
1:9, respectively. In each session, two pairs of baiting probabilities
were used and an unsignaled change in the baiting rates took place at
arandom point selected uniformly at random from the middle 80 min
of the session. Although no explicit changeover delay was introduced,
the animals took time to switch between the targets such that the
minimal switching time for the fastest rat was ~1.5 s. Despite this
effective changeover delay, the animals could increase the overall
number of accumulated rewards by occasionally switching between
targets, compared with staying in one of the targets exclusively.

In our analysis and modeling (see below) when the animal was at a
target, we assume that it continuously pressed the lever corresponding to
the target.

Ofatotal of 120 sessions, we analyzed 116 sessions: the raw data of one
session were missing, and 3 more sessions were discarded because of
inconsistencies in the data.

Two-population model

This section is organized in the following way. In the first subsection,
we present the network model equations (Egs. 1 and 2) and the syn-
aptic plasticity equations (Eqgs. 3 and 4). In the following three sub-
sections, we use the model to derive a behavioral learning rule (Eq. 24)
that predicts behavior based on the history of actions and rewards. In
the following subsection (titled Covariance-based synaptic plasticity
and the matching law), we provide a formal explanation as to why the
behavior of the model obeys the matching law. For convenience, a full
list of variables and functions used in the derivation of the behavioral
learning rule appears in Table 1.

The network model equations and the plasticity rule. We model the
behavior of the animals as resulting from competition for higher
activity (e.g., a higher mean firing rate between two populations of
neurons), where each population corresponds to one target in the
behavioral task. The activity of each population follows a standard
rate equation such that

(1) = —ri(t) + F(I(1)) + ni(v), (1)
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Table 1. List of variables and functions used

Symbol Description
rft) Activity of population i
1(1) Input to target i
F(x) The network activation function, tanh(/3x)
nt) Noise term
gi(t) The external input to target /
Agjt) The change to g,(t) at time t
R(6) 1 at time of reward delivery and 0 otherwise
T{(t) Temporal average of the activity of population i
5 nL—n
' 2
9~ G
&g )
n, —m
on ;
ot
! 2
n, +m
" 2
X (wp + wp)8r + 8
y (g — wpr
1—F(y)
o) 1= F() - P(y)
w,
A (105 — ) T P (X))
1 1
E(6r) S8 — log(cosh(B(wg + w,)8r + B8g))
2 B(wE o) g(cosh(Blwg I Bdg
T; Average stay duration at target /
A Transition rate from target i
Ot Extremum point of the energy function
&, Value of an extremum point for 59 = 0
E° Unperturbed energy function
T° Escape time for the unperturbed energy function, F°
Adq(t) The change of &g at time t
aft) 1if the network at time t is in state /, and 0 otherwise
AA{D) The change of A; at time t

Ve 1A+ 1A,
A VA A
f; The fractional investment at target i

where 7is the time constant of the dynamics, r,(¢), i € {1, 2}, denotes the
activity of the neural population corresponding to target i at time t,
F(x) = tanh(Bx) is the network activation function, 8 is a parameter, I, is
the total synaptic input to population 7 and n,(¢) is white noise such that
(ni(1)) = 0and (n(n,(t')) = 40°18;8(t — t'). This noise represents
stochasticity in the activity of neurons within the population of neurons
or external noise.
The synaptic input to population i, I; is given by the following:

L(t) = wpr(t) —
L(t) = wpry(t) —

where w; and w; correspond to efficacies of the self-excitation and
lateral inhibition connections, respectively, and g; is the external in-
put to population i (Fig. 1A). The difference between the external
inputs determines the target preference of the model as will be ex-
plained below.

If B and w; are sufficiently large, the dynamics of the deterministic
limit (00— 0) of Equations 1 and 2 are endowed with two attractors, one
in which r; > r, and one in which r; < r,. In the presence of weak noise,
the activities of the two populations are characterized by two time scales.
On a short time scale 7, the activities fluctuate near an attractor of the
deterministic dynamics. On a longer time scale, the noise induces tran-
sitions between the attractors (Fig. 1B). The two attractors of the dynam-
ics in our model correspond to the two targets and a transition from one

oy (t) + gl(f)

or (1) + g(t) 2 2)
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Using the identity tanh(a + b) =
tanh (a) + tanh (b)
1 + tanh (a) - tanh (b)

is an antisymmetric function, Equation 5

, and the fact that tanh(x)

——58g=0
—8g=0.1
——38g=0.2

‘Side 1’ ‘Side 2’

45 6
Time (sec)

becomes:
ér(r) = — 8r(t)
+ G(x(1),y(1)-F(x(1)) + 8n(t), (6)
where
. : ) 1—F
7 8 9 10 G(x, y) = W)(},F)Z()/) (7)

To estimate the value of G(x, y), we first esti-
mate the value of y. Substituting Equation 2 in
Equation 1 and summing the dynamic equa-
tions of the two populations yields

1
T = fr+E[F(x+y)+F(y*x)]
+n, (8)
n, + n,
where n = )

Figure 1. The two-population network model. A, A schematic description of the network architecture. Curved arrows indicate
excitatory connections within the populations; circled-headed lines, inhibitory connections between the populations; and vertical
arrows, external inputs. B, The activity of the two neuronal populations during a 10 s simulation of the model, usingg, = g, = 0
and o = 3.25. (, The dynamics of the difference in the activity of the two populations follows the dynamics of a particle in a
double-well potential, subject to white noise. D, The shape of the double-well potential depends on the value of 8g, depicted here

for three different values of the external input.

attractor to the other corresponds to the switching of a target in the
behavioral task.

The two external inputs in Equation 2, g, and g,, model the animal’s
“preference” for the two targets. These change in our model according to
a reward-dependent synaptic plasticity rule:

Agi(t) = &-R(1)-(ri(t) — 7:(1)), (3)

where ¢ > 0 is a parameter that denotes the magnitude of synaptic
changes. R(t) = 1 at times of reward delivery and R(t) = 0 otherwise; 7;(t)
is an exponentially decaying temporal average of the neural activity of
population i,

dri(t) _
T ri(t) — 7:(1), (4)

where 7,, is a constant.

One-dimensional energy model for transitions between the attractors. In
this subsection, we show that the network dynamics can be approxi-
mated by the dynamics of a particle in a one-dimensional double-well
potential with noise.

We consider the dynamics of the difference of the activities of the two

-
2
subtracting the dynamic equations of the two populations yields:

F(x(t) + y(1)) + F(x(t) — (1)

’
populations, 6r = ’ . Substituting Equation 2 in Equation 1 and

8r(1) = — 8r(t) + 5 + on(t).
(5)
where x=(w; + w)dr + 8¢ 6g£g2 ;gl, y = (wg wpr,
rzm,andﬁnzn2 —m

2 2

Expanding F around y = 0 results in:
i~ —r+ F(x)y+n, 9)

where we neglected higher-order terms in y
(see also below). Assuming equality in Equa-
tion 9 yields a nonhomogeneous linear differ-
ential equation, for which the solution is given
by:

_ t ’
1 =+a0 Loaw)
r(t) = S dt'e n(t'),
(10)

‘dt'F'(x(t')). r(t) is a stochastic variable

where A(t) = MJ

whose value varies over time. Note that (r(¢)) = 0 because (n(t)) = 0. To
estimate the magnitude of r(t), we consider its variance:

(1) =

—2t '+t
1 ——+240) ! ' A=A
e dt' | dt" e (n(t"n(t"))
t

2*t+2(/\(r)*A(t’))' (11)

= —e dt' e’

Note that A(t) — A(t') = M

Jt dt"F'(x(¢")). In our simulations,
v
we chose wg and w; such that w; — w; < 0. Because F'(x) = 0, t' = ¢
implies that A(f) — A(t') < 0 and hence ¢*"~4) < 1. Thus, we can use
Equation 11 to set an upper limit to the variance of r(t):
—2t

> ' 2t

2 <217 1, T 2
(r)=-—_—-e dt'e” = o (12)

Hence, ()/(t)) = o*(wy — ) Inour simulations, based on the parameter fit
to the behavioral data, the value of o differed for each subject and each session
(see details below) but in all cases, (*(1)) < o*(w; — w)* < 3+107% Thus,
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the residual that we neglected in the Taylor ex- A B 10
pansion of F around y = 0 in Equation 9 is =
negligible. Moreover, because (y*(¢))<<1, we § 6 8
can estimate the value of G(x,y) Taylor expand- b
ing Equation 7 around y = 0, yielding: £ 6
4
Gxy) = 1+ (F(x) = DBy + 00, &
o
(13) 8 !
52
where the O notation denotes the error term in g 2
the approximation, expressing the fact that the
error is smaller in absolute value than some 0 0
constant times y* when y is close enough to 0. 0 0.05 0.1 0.15 0.27 0.3 0.33 0.36
Note that |F*(x) — 1| < 1, in addition, in 3g o

our model, B = 10. Therefore, G(x,y) =~ 1,
where the fluctuations from 1 are expected to
be smaller than 3% and are neglected in what
follows. Therefore, Equation 6 is approxi-
mately one-dimensional. Rewriting Equation 6
using an energy function yields:

Figure 2. Theanalytical approximations. A, Escape time as a function of &g. Blue and red dots represent the mean == SEM escape
time from targets 1and 2, respectively, generated by simulations of Equations 1and 2. The solid lines indicate the predicted mean
escape time based on the double-well potential approximation (Eq. 16); and the hyphenated lines, the predicted mean escape
times based on the parabolic approximation (Eq. 20). B, Escape time as a function of the magnitude of the noise forg, = g, = 0.
Blue dots are mean == SEM stay duration generated by simulations of Equations 1 and 2. The black line indicates the predicted

mean escape time based on the double-well potential approximation (Eq. 16). A, B, Each dot is based on 10 stays.

bre—C 4
’rr——@-i- n, (14)
where

1 —162 !

HOD = 3 oy + @)

log (cosh (B(wy + w)dr + B8g)). (15)

The resultant energy function (Eq. 15), is characterized by two minima
(Fig. 1C, m; and my,), reflecting the two attractors of the deterministic
dynamics. Thus, the dynamics of the difference in the population activity
approximately follows the dynamics of a particle in a double-well poten-
tial, subject to white noise.

The transition times. The energy function E defined in Equation 15
depends on the external inputs via the value of 8g. This is illustrated in
Figure 1D, where we plot E as a function of &r for three values of 8g: dg =
0 corresponds to the case in which the external inputs to the two popu-
lations are equal, g, = g,. In this case, the energy potential is symmetric
around 6r = 0 (Fig. 1C,D, blue line). However, if the two populations
receive different external inputs (e.g., if g, < g, and thus, g < 0, the well
that corresponds to target 1 is deeper than the well corresponding to
target 2; Fig. 1D, red line). The more negative the value of 8g, the deeper
the well corresponding to target 1 and the shallower the well correspond-
ing to target 2 (Fig. 1D, green line).

In the limit of weak noise, the particle spends most of the time near an
attractor. However, occasionally, a sufficiently large fluctuation of the
noise term induces a transition to the other attractor state. The deeper the
well, the larger the fluctuation in the noise term required for a transition
to the other attractor and, therefore, the longer, on average, the transition
time. The mean transition time from the well corresponding to target 1
(Fig. 1C, blue) to the well corresponding to target 2 (Fig. 1C, red) T, also
known as the escape time, is given by (van Kampen, 2007):

my X
T E(x) —E(y)
T =—=|dxeo | dye &, (16)
o
my -

where m, and m, are the two minima of the energy function E. This
expression can be further simplified by using a parabolic approximation
(van Kampen, 2007), resulting in:

E(barrier)—E(m))

T e (17)

This parabolic approximation becomes more accurate as o> — 0. More-
over, it is well known that, in this limit of o> — 0, the transition times

between the wells follow a Poisson process, with a transition rate A; =
1/T; (van Kampen, 2007). We use this result in the next section to con-
struct a behavioral model based on transition rates.

According to Equation 17, the mean escape time from the well is
exponential with the ratio of the difference between the energies at the
barrier and at the minimum, E(barrier) — E(m,), also known the energy
gap, and the noise. Thus, the external inputs affect the transition times
because the energies at the extrema of E depend on 8g. Because of the
exponential dependence of the mean escape time on the energy gaps,
even a small change in the energy gap would have a large effect on the
mean escape time from the well. Therefore, we focus on the effect of small
changes in the value of 8¢. Taylor expanding the energy at the extrema
around 8¢ = 0 and denoting by 8r°,, the value of an extremum point for
8¢ = 0, it is easy to see that &r,,, = &%, + O(8g). Expanding E(5r,,,)
around 6¢ = 0 yields:

Text

E(Srexz) = EO(Srgxr) - (wE 4 (1)1)

- 8¢ + 0(8¢%), (18)

where E° is the energy for 8¢ = 0 and we used the fact that at an extre-
IE(8r)
mum, o = 0; thus,

87, = tanh(B(w; + w)drY,,). (19)

Equation 19 has three solutions: 872, = 0, which corresponds to the
value of 8r at the barrier, and 8%, = = 1, which corresponds to the

two minima of the unperturbed energy function E°. In our simula-

tions, B(w; + ®,) = 12.5 and at the minima of E°, |8r),| =~ 1
— 3 - 107 'L, Therefore, in what follows, we replace 8%, at targets 1
and 2 with 87, = — 1 and &), = 1, respectively. Substituting
Equation 18 in Equation 17 thus yields:
¢
T, =~ T°- e (20a)
3¢
T,= T "7, (20b)

where T is the mean escape time for the unperturbed energy function,
E°. In what follows, the value of T° was computed numerically using
Equation 16 for 8g = 0.

The derivation of Equation 20 relies on four approximations: (1)
the double-well approximation (the derivation of Egs. 14 and 15 from
Egs. 1 and 2); (2) the parabolic approximation of Equation 17; (3) the
Taylor expansion of the energy function; and (4) the approximate
solution to Equation 19 that replaces 8r), with +1. To test these
approximations, we simulated the network dynamic equations (Egs. 1
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the values of the external inputs are held
fixed at g; and g,. Nevertheless, the temporal
average is expected to converge to the ensem-
ble average if learning is sufficiently slow (¢
is sufficiently small), the reward schedule is
stationary, and the temporal window 7, is
sufficiently long.

Subtracting the plasticity rules for g, and g,
in Equation 21 yields:

Adg(t) = & - R(1) - (8r(t) — (8r(1))).

0 Stay duration (sec) 40 0 Stay duration (sec) 5 (22)
C 1 D 1 . Note that in the limit of weak noise, the value
- o —Income of or(t) fluctuates around the attractors of
S 08 g 08 — Investment the deterministic dynamics, which are
£ LI A | approximately =1, depending on the behav-
§ 06 ol 06 | ioral state of the animal. Thus, &r(f) =
£ A a)(t) — a,(t) where a;(t) is a binary variable
T 04 ° 04 | such that a,(t) = 1 if at time ¢ the network is in
S A [ | state i and a,(f) = 0 otherwise. Using the same
@ 02 o u 02 | approximation, (8r(f)) =~ Prla(t) = 1]
[ F : \\ — Prla,(t) = 1]and &r(t) — (5r(1)) =
0 L - — 2(a,(t) — Pr[a,(t) = 1]). Therefore, the
0 02 04 06 08 1 095 100 105 110 115 120

Fractional income

Figure 3. The behavior of the rats. A, B, Histogram of the stay durations of a single subject from all the stationary sections, in

Session time (min)

plasticity rule of Equation 22 can be approxi-
mated by:

Adg(t) = —2¢ - R(1) - (a\(1)

which the baiting rate ratio was 9:1. 4, Distribution of stay durations in the rich target. B, Distribution of stay durations in the lean

target. C, Fractional investment as a function of fractional income. Each dot corresponds to one stationary section in which the
baiting rates were kept constant. Colors represent the different subjects, and the different markers indicate the different baiting
rate ratios (triangles, 1:9; circles, 1:3; squares, 1:1; diamonds, 3:1; inverted triangles, 9:1). The diagonal solid line indicates the
behavior predicted from the matching law. D, Example of instantaneous estimates of fractional income (red) and fractional

— Pr[a,(t) = 1]). (23)

Substituting Equation 23 in Equation 20 and
using the Poisson process approximation

investment (blue) in a single experimental session of the subject depicted with cyan. At time t = 99.52 min, the baiting rate ratio

was changed from 9:1to 1:9 (vertical hyphenated line). The adaptation time is defined as the time interval between the change in

the baiting rates and the time at which the instantaneous fractional investment reached halfway between the fractional invest-

ments in the stationary sections before and after the change in the baiting rates (dotted vertical line, see Materials and Methods).

This experimental session is the same as in Gallistel et al. (2001, their Fig. 6, top right).

and 2) and measured the average stay duration in target 1 (Fig. 24,
blue dots) and target 2 (Fig. 2A, red dots) for different values of &g.
The results of these simulations are comparable to the predictions of
the double-well approximation (Eq. 16, Fig. 2A, blue and red solid
lines) and to the predictions of Equation 20 (Fig. 2A, blue and red
hyphenated lines), supporting the analytical approximations. To fur-
ther test these approximations, we compared the dependence of the
mean escape time on the magnitude of the noise 0. The numerical
simulations (Fig. 2B, dots) are comparable with the predictions of
Equation 16 (Fig. 2B, solid lines), further supporting the analytical
approximations.

Synaptic plasticity and the derivation of a behavioral model.

In the synaptic plasticity rule of Equation 3, changes in the external
inputs g, and g, are driven by the product of reward and population
activity, where the latter is measured relative to its exponentially
weighted temporal average (Eq. 4). To derive an analytical expression
in what follows, we consider an approximation of the plasticity rule,
in which the running average is replaced by an ensemble average,

Agi(t) = ¢ - R(t) - (ri(t) — (ri(1))), (21)

where (r;(t)) is the ensemble average of the neural activity of popula-
tion 1.

Equations 3 and 21 differ in the average term relative to which the
neural activity is measured. The term 7;() in Equation 3 is a measure
of the history of the recent activity. Approximately, it is the activity
averaged over a time period of duration 7,,. By contrast, the term
(ri(t)) is a deterministic function of g, and g,. It is the activity of r;,
averaged over an infinitely long period of time, in a network in which

yields:
AX(1) =
Aa(t)
)\l(t) . <eiT’R(’)'(“‘(’)fi)\,(z)+)\z(t)) _ 1)
(24a)
Ai(r)
AN (t) = Ay(8) - (e"”R(‘)‘("Z(‘)"Azm+M(z)) - 1),
(24b)
where
2¢
T (o e 2
and we used the fact that in a Poisson process Pr{a,(t) = 1] =
A(8)

M)+ A0

Note that, in contrast to Equations 1-4 in which the variables denote
neural activity, Equation 24 is a behavioral model” in the sense that it
relates the dynamics of the average transition rates to the history of
actions and rewards with no reference to the underlying neural activity.

Covariance-based synaptic plasticity and the matching law. To see why
the synaptic plasticity rule (Egs. 3 and 4) is expected to result in matching
behavior, we consider Equation 21, which is an approximation of Equa-
tions 3 and 4, in which the running average is replaced by an ensemble
average. Equation 21 is an example of a “covariance” rule in which
changes in the synaptic input are, on average, proportional to the cova-
riance between the reward and the population activity. In a previous
study, we proved a theorem that relates the vanishing covariance between
reward and neural activity to the matching law (Loewenstein and Seung,
2006). To gain insights as to why a covariance rule leads to matching here,
note that if ¢ is sufficiently small, the stochastic dynamics of Equation 21
approximately follow its average velocity approximation (Heskes and
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Kappen, 1993; Kempter et al., 1999; Dayan et A 300 B 200
al., 2001), in which the right hand side of the
equation is replaced by its ensemble average. 250
To compute this average, we separately con- 150
sider rewards delivered when the network is in % 200
state i and when the network is not in state i: E 150 100
[S)
(Agi(1) = & - (R(1) - (ri(1) * 400
= (r(M) |at) = 1) - Prla(n) = 1] 50 %0
+(R() - (1) — () | alt) = 0) 0 0
0 Stay duration (sec) 40 0 Stay duration (sec) 5
* Pra(r) = 0]). (26)
C 1 D 1 '
In the concurrent VI reward schedule, the de- " — Income
livery of a reward depends on the chosen target B 08 08 — Investment
and does not explicitly depend on the neural £ v ' |
activity. Because the time scale of neural dy- 3 .
A . . > 06 4 06 |
namics in our model is approximately three c
orders of magnitude shorter than the time scale T 04 o 04 ]
of reward delivery, reward and neural activity S a ' [
are approximately independent when condi- S 02| 4 02
tioned on the state of the network, yielding: i > ’ I b
| N
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Figure 4. Simulations of the model (Eqs. 1—4). 4, B, Histogram of the stay durations of simulations of the same sessions

as in Figure 3A,B. C, Fractional investment as a function of fractional income. Same as in Figure 3C. D, Example of

Pra; = 0]), (27)

where for clarity we removed the dependence
of the variables on t. Note that, according to
Equation 27, changes in the input to population 7 are the sum of two
products, the first corresponding to the contribution of rewards har-
vested when the network is in state i and the second corresponding to
rewards harvested when the network is not in state i. The first term in
each product is the return of the corresponding target. The second term
in each product is the average population activity when in the corre-
sponding target, measured relative to the population average activity. On
average, the activity of population 7 is larger than its average when in state
i and is lower than average otherwise, (r;|a; 1) > (r)and (rja
= 0) < (r;). The third term in the product corresponds to the frac-
tional investment, the fraction of time the network spends in each of the
targets.

Next, we decompose the average population activity according to the
state of the network:

(r) = (rila; = 1) - Prla; = 1] + (rifa; = 0) - Prla; = 0].
(28)

Equation 28 implies that the products of the second and third terms in
the sum in Equation 27 are equal in their magnitude and opposite in
their sign, (@ | 4 = 1) — ) Pfg, = 1] = - (<ri|ai = 0
— (r)) - P{a; = 0] Thus, the relative contribution of the two prod-
ucts in Equation 27 depends only on the returns. Formally, substitut-
ing Equation 28 in Equation 27 yields:

(Ag) = & - Prla; = = 0]~ (e = 1) -
(rila; = 0) - (R|la; = 1) — (R|a; = 0)). (29)

1] - Prfa;

As long as the two targets are chosen, Prla;=1] - Pr{a;=0] > 0. More-
over, {rila; = 1) — {r]a; = 0) > 0. Thus, the synaptic plasticity rule
converges, on average, only if the returns from the two targets are equal,
(Rla; = 1) = (R|a; = 0) and the network behaves according to the
matching law.

Multiple-population model
To model decisions between multiple foraging locations, we consider a
network composed of N populations of neurons (see Fig. 7A for N = 3).

instantaneous estimates of fractional income (red) and fractional investment (blue) in a simulation of the experimental
session depicted in Figure 3D.

The synaptic input to population 7 (I;) is given by a generalized form of
Equation 2 in which each population is self-excited and inhibited by all
other populations:

N

— wIZ(l —

j=1

Ii(t) = weri(t) Bij)rj(t) + g(1). (30)

To model decision making, the dynamics of the deterministic limit (o —
0) of Equations 1 and 30 should be endowed with N attractors, wherein
each attractor the activity of one population is substantially larger than
the activities of all other populations. It is easy to see from Equations 1
and 30 that, if B => 1, a sufficient condition for this multistability is that
the input to every population i is in the range w; — (N — 1w, < g(1) <
— wg; — (N — 3)w;. It should be noted that this is not a necessary condi-
tion. If we relax the requirement that all g;(¢) are equal, there exists a
wider range of values of g;(¢) such that the dynamics is characterized by N
attractors, in which one population is active and the rest are inactive.

Numerical procedures
The dynamic equations (Egs. 1 and 2) were integrated using Euler’s
method with a time step of 10 * X 7. Recomputing with a shorter
integration time step did not produce appreciable differences in the results.
In the two-population model, the initial values of the inputs to the popula-
tions were g‘;“mal = 0,1€{1,2}. In the three-population model, the initial
values of the inputs to the populations were g™ = — 0.65,1 €{1, 2, 3}.
The initial values of the activities of the populations were chosen such that
the activity of one population, drawn at random, was +1 and the activity/
activities of the other populations were —1. To simulate saturation, we used
a hard bound on the maximal synaptic efficacies such that |g; — g™
< Gupr

As described above, it took the animal time to switch between the
targets. To simulate these delays, we computed the average travel time for
each session and used this value as the travel time for each of the switches
between the targets. A transition to target i occurred when r; — 3¥,
(1 — &)r(r) > N. This definition prevented the recording of fast
fluctuations during a single transition from one attractor to the other as
several short visits.
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Table 2. The network model parameters

Parameter Description Value

T Time constant of the dynamics 10ms

g Strength of self-excitation 0.6

w, Strength of lateral inhibition 0.65

B Steepness of sigmoid function F 10

o Magpnitude of the noise Computed from behavior
) Magnitude of synaptic plasticity Computed from behavior
Yeap Maximal synaptic input 0.2

T Time constant of mean activity estimation 255

Data analysis

To avoid the effects of the initial conditions, the first 10 min of each
session was excluded from the analysis. In analyses performed on the
stationary sections, the first 10 min after the change in baiting rates was
excluded from the analysis.

The fractional investment/income in Figures 3D and 4D was com-
puted by convolving the binary vector of stays/rewards with a causal
exponential filter with a decay parameter of 90 s.

In the estimation of the adaptation time, the time in which the investment
fraction reached halfway was computed according to the following proce-
dure: (1) the fraction of time the animal spent on side 1 in the 10 min before
the change in the baiting rates, defined as t,,,, was computed; (2) the fraction
of time the animal spent on side 1 in the 10 min interval starting 10 min after
the change in the baiting rates, defined as t,,,,, was computed; and (3) the
adaptation time was defined as the first crossing of the fractional investment
Of (f,e T t,05)/2 after the change in the baiting rates.

In the analysis of the effect of a rewarded stay on the stay durations of
subsequent stays in that target (see Fig. 6B), the significance was deter-
mined by generating the surrogate data 10* times and counting the num-
ber of times the stay duration of the control exceeded that of the data.

Choice of parameters

Two populations. The behavioral model (Eq. 24) is characterized by one
parameter, the learning rate 1) and two initial conditions, A,(f = 0) and
A, (t = 0). Given these parameters, the time-varying transition rates A, (t)
are a deterministic function of the sequence of actions, a,(f) and rewards,
R(t). Given the transition rates, the likelihood of the sequence of stay
durations can be computed trivially. For each session, we assumed that
A (t=0) = A, (t = 0) = A,,;, and used the method of maximum likeli-
hood to find the values of A;,,;, and m that best fit the behavior of the rats
in that session.

In all simulations, the values of 7, wp, @, B, g, and 7,, were held fixed
(Table 2). The magnitude of the noise ¢ was computed from A,,;, by
numerically solving Equation 16 assuming 6¢ = 0 (Fig. 2B) and finding
the value of o such that T, = 1/A,,;,. The value of ¢ was extracted from
n - (0 + w)o”

2 .

Three populations. To keep the average stay duration in the case of
three populations comparable to that of the case of two populations,
we scaled all values of o that were extracted from the data by the same
factor, 0.8.

Equation 25 such that ¢ =

Results
Characteristics of behavior
We analyzed the switching behavior of rats in a free operant
experiment in which rewards were delivered according to the
concurrent VI reward schedule. To study the adaptation of ani-
mals to a change in the statistics of the reward schedule, the
baiting rates changed once within each session at a random, un-
signaled time in the middle part of the session. Thus, each 120
min session was composed of two sections of a stationary reward
schedule, where each section lasted between 20 min and 100 min
(see Materials and Methods).

The subjects constantly switched between the targets. Averag-
ing over all subjects and sessions, animals spent on average 3.42 =
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0.01 s in a target before switching to the other side. The switching
between targets was irregular, and the distribution of times that
the animal dwelled in a target, which we refer to as “stay dura-
tions,” rose to an early peak that increased with the correspond-
ing target baiting rate and then tailed off in an approximately
exponential manner (Gallistel et al., 2001). This is illustrated in
Figure 3 A, B, where we plot the histograms of the stay durations
for one subject at the rich side (Fig. 3A) and the lean side (Fig.
3B),in all session parts in which the baiting rate ratio was 9:1. The
approximately exponential nature of the distribution of stay du-
rations was also manifest in the coefficient of variation, CV=1.11
and CV = 0.97 for the stays depicted in Figure 3A and Figure 3B,
respectively. Averaging over the different schedules and different
animals resulted in an average CV of 0.98 * 0.03. This CV is
consistent with what is expected from an exponential distribu-
tion (for which CV = 1).

According to the matching law, the fraction of total time spent
in a target is equal to the fraction of rewards harvested from that
target. It follows that the ratio of the means of the distribution of
the stay durations (“fractional investment”) should match the
ratio of rewards harvested at the two targets (“fractional in-
come”). In line with this law of behavior, when considering the
subject in Figure 3, A and B, the average stay durations in the rich
and lean sides were 8.7 = 0.2 s and 1.04 £ 0.02 s, respectively,
resulting in a fractional investment 0f 0.893 = 0.006. The number
of rewards harvested in the rich and lean sides were 2913 and 375,
respectively, resulting in a fractional income of 0.886, similar to
the fractional investment. The relation of the fractional income to
the fractional investment in all stationary sections of the experi-
mental sessions is shown in Figure 3C. Each dot in Figure 3C
corresponds to one animal in one section of a session in which the
baiting rates were kept constant. The different colors denote the
different animals, and the different markers denote the different
baiting rate ratios of the reward schedule used in the experiment.
Note that, consistent with the matching law, all points are aligned
approximately along the diagonal.

Traditionally, the matching law has been studied in stationary
environments in which the parameters of the reward schedule are
constant throughout the session. In contrast, as described above,
each session in our dataset was composed of two stationary sec-
tions, each with a different pair of baiting rates. By analyzing the
behavioral response to the unsignaled change in the reward
schedule, it is possible to study how subjects adapt to matching
behavior. The results of a representative experiment are shown in
Figure 3D, where the instantaneous estimates of fractional invest-
ment (blue) and fractional income (red) are plotted as a function
of time (see Materials and Methods). Initially, the baiting rate
ratio was 9:1 in favor of target 1. As aresult, the subject spent most
of that time in that target. At time 99.52 min (hyphenated vertical
line), the baiting rate ratio changed to 1:9, resulting in a decrease
in the fractional income. This change in the fractional income
(red) was followed by a change in the fractional investment
(blue). To quantify the speed of adaptation, we computed the
adaptation time, defined as the time interval between the change
in the baiting rates and the time in which the investment fraction
reached halfway in the adaptation process (Fig. 3D, dotted verti-
cal line; see Materials and Methods). The resultant adaptation
time in Figure 3D was 2.86 min. Averaging over all subjects and
sessions, the average adaptation time was 2.77 * 0.19 min. In a
previous study, it was argued that this adaptation is as fast as the
limit set by an ideal Bayesian detector (Gallistel et al., 2001),
constraining the possible models for adaptation to the changing
statistics of the environment.
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The decision-making network model

We posit that the behavioral state of the animal is determined by
the activities of two noisy populations of neurons. If population 1
is more active than population 2, the animal moves to target 1 and
stays there. The opposite behavior occurs if population 2 is more
active than population 1. The two populations of neurons are
connected by lateral inhibition and self-excitation and receive
external input that depends on the history of population activity
and rewards delivered (Eqs. 1-4; Fig. 1A). This model is similar to
previous ones proposed to explain switching between dominance
periods in perceptual bistability experiments (Moreno-Bote et
al., 2007; Moreno-Bote et al., 2010; Moreno-Bote et al., 2011).

Simulating the network dynamics model while assuming no
external inputs (Egs. 1 and 2), we found that the activities of the
two populations (Fig. 1B, blue, population 1; red, population 2)
alternate between two states: a state in which the activity of pop-
ulation 1 is high and the activity of population 2 is low (Fig. 1B,
white background) and a state in which the activity of population
1 is low, whereas that of population 2 is high (Fig. 1B, gray back-
ground). This bimodal dynamics results from the lateral inhibi-
tion between the two populations of neurons: if the activity of
population 1 is higher than that of population 2, the inhibition on
2 is larger than the inhibition on 1, enhancing the difference in
the activities of the two populations. This difference is further
enhanced by the self-excitation within each population.

The bimodal network dynamics approximately follow the dy-
namics of a particle in a one-dimensional double-well potential
in the presence of noise (Fig. 1C; Materials and Methods). Most
of the time, the particle fluctuates near a minimum of the poten-
tial (Fig. 1C, m, and m,). These fluctuations correspond to the
small magnitude fluctuations in the activities of the populations
within a network state (Fig. 1B, within a single white or a gray
region). However, occasionally, the noise is sufficiently strong to
shift the particle beyond the energy barrier, which corresponds to
a change in the state of the network. This double-well description
will become useful in what follows.

The distribution of stay durations of the rat was approxi-
mately exponential (Fig. 3A,B). In comparison, a histogram of
the empirical distribution of stay durations of our model was also
approximately exponential, with CV = 0.99 (not shown). The
exponential distribution of stay durations in our model emerges
because the time scale of transitions, which is on the order of
seconds, is substantially longer than the time scale of the activity
of the populations, which is 10 ms. As a result, at the time of a
transition between states, the network has no “memory” of the
previous transition; thus, consecutive transitions are approxi-
mately independent. This intuition becomes formal when con-
sidering the double-well approximation (Materials and
Methods). In the limit of weak noise, the escape time of a particle
in a double-well potential is exponentially distributed (van Kam-
pen, 2007). The rate of transitions depends on energy gap (the
“depth” of the well). The larger the gap, the lower the rate of
transitions.

The depths of the wells depend on the external inputs (Fig.
1A). If the two external inputs are equal, the corresponding
double-well potential is symmetric and the transition rates be-
tween the two targets are equal (Fig. 1C, D, blue). In contrast, if
the inputs to the two populations are not equal, the well associ-
ated with the larger input is deeper than the well associated with
the smaller input (Fig. 1D, red and green). As a result, the transi-
tion rate from the target associated with the larger input is smaller
than that from the target associated with the smaller input. Thus,
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the two external inputs determine the target preference of the
model.

Synaptic plasticity

We assume that the external inputs in our model are not constant
and change over time. Motivated by the finding that activity-
dependent synaptic plasticity is modulated by the reward-
dependent dopamine signal (Jay, 2003; Pawlak and Kerr, 2008;
Wickens, 2009; Zhang et al., 2009), a number of theoretical stud-
ies have investigated the hypothesis that reward-modulated syn-
aptic plasticity rule underlies operant learning (Seung, 2003; Xie
and Seung, 2004; Loewenstein and Seung, 2006; Farries and
Fairhall, 2007; Izhikevich, 2007; Law and Gold, 2009; Legenstein
et al., 2010; Loewenstein, 2010). We follow a similar approach
and consider a reward-modulated synaptic plasticity rule, in
which changes in the inputs to the populations, Ag;, occur only at
times of reward delivery and are proportional to the difference
between population instantaneous activity and its temporal av-
erage (Eqs. 3 and 4).

We simulated the network dynamic equations (Egs. 1-4) in
the same concurrent VI reward schedules as were used for the
rats. To account for differences in behavior between subjects and
sessions, we estimated the parameters of the network model and
synaptic plasticity rule for each session separately, as described in
detail below.

We found that, even when synaptic plasticity is incorporated
into the model, the shape of the distribution of stay durations in
the session parts in which the baiting rates were constant was
approximately exponential. This is illustrated in Figure 4, A and
B, where we plot the histograms of the stay durations for a simu-
lation of the rat presented in Figure 3, A and B, at the rich side
(Fig. 4A) and the lean side (Fig. 4B) in the same session parts as in
Figure 3, A and B.

To quantify matching in our model, we computed the frac-
tional investment as a function of fractional income for all sta-
tionary sections of the simulation in which the baiting rates were
kept constant (Fig. 4C). As in Figure 3C, each dot in Figure 4C
corresponds to the fractional investment as a function of frac-
tional income of one animal model in one section. The different
colors and markers denote the simulations of the different ani-
mals in the different reward schedules as in Figure 3C. Consistent
with the matching law, all points in the simulation are aligned,
approximately, along the diagonal (compare Figs. 4C, 3C), dem-
onstrating that the plasticity rule of Equations 3 and 4, when
implemented in the network model (Eqgs. 1 and 2) results in
matching behavior.

To illustrate the adaptation of the model to a change in the
baiting rates, the dynamics of the simulation of the experimental
session presented in Figure 3D is presented in Figure 4D. Similar
to the behavior of the animal (Fig. 3D) and in line with the match-
ing law, the instantaneous fractional investment (blue) is aligned
with the instantaneous fractional income (red) in the stationary
sections before and after the change in the baiting rates (at t =
99.52 min; hyphenated vertical line). Remarkably, the adaptation
time of the model was as fast as that of the animal, 2.61 min
(compared with 2.86 min in Fig. 3D). Averaging over all sessions,
the adaptation time of the model was 2.50 = 0.24 min, compara-
ble to the adaptation time of the animals (2.77 = 0.19 min). These
simulations thus indicate that the dynamics of the network model
with the synaptic plasticity rule (Eqs. 1-4) are sufficiently fast to
account for the experimentally observed adaptation to matching
behavior.
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Convergence to matching behavior

To gain insights as to why the synaptic plasticity rule (Egs. 3 and
4) yields matching behavior, note that changes in the inputs to a
population are proportional to the difference between popula-
tion instantaneous activity at the times of rewards and its average.
When the network is in state 1 (Fig. 1B, white), the activity of
population 1 is higher than its average activity. As a result, a
reward delivered at that time results in a positive change in the
input to population 1 and a shift of preference in favor of target 1.
By contrast, a reward delivered at a time in which the network is
in state 2 (Fig. 1B, gray), in which the activity of population 1 is
lower than its average activity, results in a negative change in the
input to population 1 and a shift of preference in favor of target 2.
Changes in the input to population 2 are a mirror image of the
changes to population 1 and equally contribute to the change in
target preference.

The rates of rewards delivered when the network is in each of
the states depend on the returns of the two targets. The larger the
return of a target, the larger the number of rewards delivered
when the network is in the corresponding state and, as a result,
the larger the shift over time in preference in favor of that target.
The returns, however, are not constant over time. In the concur-
rent VI schedule, the larger the fractional investment in a target,
the lower the return associated with that target. As a result, a shift
in preference in favor of a target is accompanied by a decrease in
the return associated with that target and an increase in the return
associated with the other target. Therefore, even if initially the
return of one of the targets is larger than the return of the other
target, the synaptic plasticity rule will shift the preference of
the network in favor of the larger return target, thus equalizing
the returns associated with the two targets. This change in pref-
erence will cease, on average, only when the returns associated
with the two targets are equal. In other words, the synaptic plas-
ticity rule will converge only when behavior follows the matching
law. A more formal argumentation relating the synaptic plasticity
rule with the matching law appears in Materials and Methods.

Behavioral learning rule

As discussed in the previous sections, the transition rates between
the two states depend on the difference in the external inputs (Fig.
2A), which in turn depend on the history of rewards and actions.
In the Materials and Methods, we derive an approximate analyt-
ical behavioral model that relates the transition rates to the his-
tory of actions and rewards (Eq. 24). For clarity, we rewrite
Equation 24:

A2(r)
AN (D) = A(2) - e’"m’)'(“‘(’)’)\lo)uz(t)) -1

A
AN (1) = A(1) - e’"R(t)'(“2(’)12(:)“10)) -1,

where A; denotes the transition rate from state i, AA; denotes the
change in A;, R(¢) is a binary variable that denotes the time of
reward such that R(#) = 1 at times of reward delivery and R(#) =
0 otherwise, a,(¢) is a binary variable that denotes the state of the
network such that a,(t) = 1 at times in which the network is in
state 7 and a;(t) = 0 otherwise, and 7 is a parameter that depends
on the parameters of the model (Eq. 25).

To gain insights into the behavior of the model, note that in
the absence of reward, R(t) = 0, AA,(#) = AX,(t) = 0; thus, there
are no changes in the transition rates. Consider a reward deliv-
ered when the animal is at target 1. In that case, a,(t) = 1; thus,
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A (1)
R0
model to spend more time at the rewarded target. Note also that
at the time of reward delivery, a,(f) = 0; thus, a,(f) —

A (1)
Ay(1) + Ay (1)
in favor of spending less time at target 2.

The behavioral model is substantially simpler than the net-
work model. The variables of the behavioral model are directly
related to the experimentally observable variables, namely, ac-
tions a,(t) and rewards R(t), rather than the hidden variables of
the network activity and synaptic efficacies. Moreover, the net-
work model is characterized by 8 parameters (Table 2) and 6
initial conditions. By contrast, the behavioral model is character-
ized by a single parameter, the learning rate m and two initial
conditions, the two initial transition rates.

Another advantage of the simpler behavioral model is that the
hidden stochasticity of the network model is replaced by a deter-
ministic model of transition rates. Given initial conditions and a
learning rate 1, we can compute the sequence of transition rates
and use this sequence to compute the likelihood of the model.
This enabled us to use the method of maximum likelihood to
derive the parameters of the model that best fit the behavioral
data. The parameters used in the network simulations that pro-
duced Figure 4 were extracted in this way from the data (Materi-
als and Methods).

> 0. As aresult, AA,(#) < 0, biasing the

< 0, resulting in AA,(#) > 0, biasing the model

Model predictions

A straightforward calculation reveals that, in the behavioral
model (Eq. 24), the product of the transition rates is unchanged:
(A + AN X (A, + AXy) = A, X A,. Thus, we expect that,
although a change in the baiting rates should affect the target
preference, as manifested in the ratio of the transition rates, the
product of transition rates should remain relatively unchanged.
In other words, because of the identity log (A, X A,) = log (A,) +
log (A,), our model predicts that the sum of the logarithm of the
transition rates should remain unchanged.

To test for this “conservation law,” we studied to what extent
the sum of the natural logarithm of the transition rates changed
after a change in the reward schedule. Assuming a stationary
Poisson process, the maximum likelihood estimator of the tran-
sition rate is the number of stay durations, divided by the sum of
these durations. We used this method to estimate the transition
rate from each of the two targets in each of the stationary sections.
The results of this analysis are shown in Figure 5A. Each dot in
Figure 5A corresponds to a single session and depicts the sum of
the logarithm of the two transition rates after the change in the
baiting rates, as a function of this sum before the change. Differ-
ent animals are depicted with different colors, as in Figure 3C. In
line with our prediction, the dots approximately align along the
diagonal (black line).

Note that caution should be exercised in this analysis. In some
sessions (Fig. 5A, circled dots), the baiting rates in the second
section of the session were a mirror image of those in the first
section (ratio x:y in the first section changed to ratio y:x in the
second section). In those sessions, because of the symmetry in the
baiting rates, the values of A, and A, after the change in the baiting
rates are expected to be approximately equal to A, and A, before
that change, respectively in almost any model of learning. In
those symmetrical sessions, the conservation of the product of
the transition rates is a trivial outcome of the symmetry in the
baiting rates. Therefore, we refined our analysis and considered
only sessions in which there was no such symmetry in the ratios of
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the baiting rates before and after the
change (Fig. 5A, noncircled dots). In line
with our model, the product of transition
rates in the nonsymmetrical sessions re-
mained approximately unchanged be-
tween the sections of the same session (r =
0.81). Importantly, the correlation be-
tween the products of transition rates
was substantially larger than the corre-
lation between the sums of transition
rates, A; + A, (r = 0.26) or the average
visit cycle (defined as the sum of the stay
duration in target 1 and the following
stay duration in target 2), VC = 1/A; +
1/A, (r = 0.45). The fact that the corre-
lation coefficient for the product of
transition rates was larger than that of
the sum of transition rates or the aver-
age stay duration indicates that the con-
served product of transition rates is not
an artifact of heterogeneity between ses-
sions and subjects and is not an epiphe-
nomenon of a conservation of the sum
of transition rates (Myerson and Miezin,
1980) or conservation of the average
visit cycle.

Another prediction of the conserva-
tion of the product of transition rates is
that the average visit cycle is expected to
be a function of choice preference. When
the product of transition rates is constant,
a straightforward calculation reveals that
the average visit cycle is given by the

following:
()

where A is the geometric mean of the transi-
tion rates (A = A, * A,), and f; is the
fractional investment at target 7. To test this
prediction, we computed the average VC
and the fractional investment in each sta-
tionary section. Each dot in Figure 5B de-
picts the average VC as a function of the

VC =

> =

(31)
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Figure 5. Predictions of the behavioral model. 4, The sum of the logarithm of the transition rates after the change in the baiting
rates asa function of that sum before the change. Each dot corresponds to a single session. The different color codes for the different
subjects. Sessions in which the baiting rates in the second section were a mirror image of those in the first section (ratio x:y in the
first section changed to ratio y:x in the second section) are marked with circles. The diagonal black line indicates the prediction of
the behavioral model. B, Mean /Cas a function of the fractional investment. Each dot indicates the V/Cin one stationary section as
afunction of the fractional investment at target Tin that section. The 3 different colors correspond to 3 different subjects, where the
subject denoted in red was the one with the shortest mean V(, the subject denoted in green had the longest mean V/(, and
the subject denoted in blue had an intermediate mean VC. The solid lines are the predictions of the behavioral model (Eq. 31). The
values of A used in the prediction were the geometric means of transition rates, averaged over all sessions, A = 0.64s ', A =
0.26s",and A = 0.37s ", for the red, green, and blue subjects, respectively.
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Figure 6. The effect of single rewards on stay duration. A, The effect of rewards on the duration of the rewarded stay. Green
represents survival plot of the distribution of rewarded stays; and black, control survival plot. The analysis was repeated for
surrogate data in which the rewards were redistributed in the stays according to a concurrent VI schedule, using the same
parameters of the schedule as in the experiment. The hyphenated vertical line indicates time t = 2.5 s; 64% of the rewarded stays
of the subjects were longer than 2.5 s (upper hyphenated line), compared with only 38% of the rewarded stays in the surrogate
data (lower hyphenated line). This sets a lower limit on the fraction of rewarded stays that were prolonged as a result of the reward.
B, The effect of rewards across stays. The mean == SEM stay duration as a function of the number of stays elapsed from a rewarded
stay in that target. Black represents the same analysis for the surrogate data. 4, B, Stays were pooled across all subjects and taken
only from the stationary sections in which the baiting rate ratio was 1:1.

dicted number of rewards they should have obtained and the

fractional investment in one stationary section, where the color de-
notes the subject tested and the symbol denotes the baiting rate ratio
(same as in Fig. 3C). The solid lines are the prediction of Equation 31.
The similarity of the line and the dots for each of the animals is
consistent with the prediction of our model.

The effect of single rewards on behavior

In the behavioral model (Eq. 24), every reward delivered to the
animal has an immediate effect on the transition rates. This im-
plies that the transition rates of the animals are expected to
change with every reward delivered to the animal even within the
stationary sections.

In contrast to this model, motivated by the fast adaptation to
matching behavior, previous studies have suggested that subjects
do not change their behavior in response to the sequence of re-
wards unless they detect a significant deviation between the pre-

actual number of rewards harvested. According to this view, the
subject has an internal model of the statistics of the sequence of
rewards. When the observed sequence of rewards becomes in-
consistent with this internal model, the subject changes its inter-
nal model and consequently its behavior in an abrupt, stepwise
manner and aligns the allocation of time at the two targets ac-
cording to the newly observed statistics. In other words, subjects
act as “change detectors” that change their behavior only when
observing statistically significant changes in the statistics of the
environment (Gallistel et al., 2001, 2007). The prediction of this
model is that, during the stationary sections, single rewards will
typically have no effect on behavior.

To test the different predictions of the two models, we tested
whether rewards have an immediate effect on the dwell time of
subjects. To do so, we considered all the stationary sections in all
animals in which the two baiting rate ratio was 1:1. The green line
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in Figure 6A depicts the fraction of stays longer than duration ras
a function of ¢ (survival plot) for all the stays in which rewards
were delivered. Compared with the rewarded stays, nonrewarded
stays were, on average, shorter (data not shown). However, this
difference does not necessarily imply that rewards caused subjects
to prolong their stays because in the concurrent VI schedule,
the longer a stay, the more likely it is to be rewarded. Thus, the
rewarded stays are expected to be on average longer than the
nonrewarded stays even if subjects’ behavior is unaffected by
rewards. To account for this dependency, we created surrogate
data in which the rewards were redistributed in the stays accord-
ing to a concurrent VI schedule, using the same parameters of the
schedule that were used in the experiment. The resultant distri-
bution of rewarded stays (Fig. 6A, black line) is the expected
distribution from a subject whose stays are exactly the same as
observed in the experiment but whose actions are insensitive to
the rewards. The difference between the green and black curves in
Figure 6A quantifies the effect of a single reward on the immedi-
ate dwell time. Note that the green line is above the black line,
indicating that, on the whole, subjects reacted to rewards by pro-
longing their stay duration. To be more specific as to the fraction
of rewards that actually prolonged the animals’ dwell times, we
used Figure 6A to derive a lower bound on the fraction of re-
warded stays that were prolonged. Consider time ¢t = 2.5 in Figure
6A (hyphenated line). We found that 64% of the rewarded trials
(green) were longer than 2.5 s, compared with only 38% as ex-
pected by chance (black). The difference (64% — 38% = 26%)
sets a lower bound such that at least 26% of the rewarded stays
were prolonged by the reward. This is in contrast with the pre-
diction of the change detection model that only a small fraction of
rewards should have an effect on behavior.

Our behavioral model also predicts that a reward will affect
the duration of subsequent stay durations. To test this, we con-
sidered, as in Figure 6A, the stationary sections in which the
baiting rates were equal and computed the average stay duration
subsequent to rewarded stays. Figure 6B (green line) depicts the
average stay duration in a target as a function of the number of
stays (n) elapsed from a rewarded stay in that target. The black
dots depict the average stay duration as a function of the number
of stays elapsed from a rewarded stay in the surrogate data of
Figure 6A. The green and black dots at n = 0 are the averages of
the distributions of rewarded stays (the distributions described in
Fig. 6A as a survival plots). The green dot is 29% higher than the
black dot, indicating that rewards had a substantial and immedi-
ate effect on behavior. The points at n = 1 depict the average
distribution of stays in a target, taking into account only stays in
which the previous stay was rewarded. The fact that the green dot
is higher than the black dot indicates that the prolonging effect of
a reward persisted to the subsequent visit of the rewarded target.
Further analyzing subsequent visits, we found that the effect of a
rewarded stay was significant up to n = 4 (p < 0.01). Note that
the black dot at n = 0 is substantially higher than the black dots at
n # 0. This reflects the fact that, as discussed above, the longer a
stay, the more likely it is that it will be rewarded. The pointatn =
—1 serves as a control; at n = —1, the black and green dots
overlap, reflecting the fact that the effect of rewards on behavior is
causal. Rewards prolong subsequent but not preceding stays.

Decision between multiple targets

Studies with choices between more than two alternatives are rare
compared with the rich literature available for choices between
two alternatives. Yet, most of the available data are consistent
with findings from the two alternatives experiments, with match-
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ing (Miller and Loveland, 1974) or generalized matching (Hunter
and Davison, 1978; Elsmore and McBride, 1994) as a phenome-
nological description of aggregate behavior.

The model shown in Figure 1A (Egs. 1 and 2) describes the
competition for higher activity between two populations of neu-
rons. This model can be readily generalized to describe behavior
in a free operant task, in which the number of targets is >2,
simply by adding additional populations of neurons that corre-
spond to the different targets (Eq. 30).

In Figure 7A, we consider a network model that consists of
three populations of neurons. For an appropriate choice of the
external inputs, the network alternates between three states, such
that in each state, the activity of one population of neurons is
substantially larger than that of the other two (Fig. 7B).

To study whether the synaptic plasticity rule (Egs. 3 and 4)
leads to matching behavior in the case of three populations, we
simulated the network model in a free operant task in which
rewards were delivered according to the concurrent VI schedule,
with an overall reward rate identical to that of the behavioral
experiment. Each simulated session lasted 120 min and was com-
posed of two sections with fixed baiting rates chosen from ratios
of 1:3:9, 1:9:9, 1:1:9, 1:3:3, 1:1:3, or 1:1:1, where the time of
change in the baiting rates was as in the behavioral experiment.
The parameters of the network were chosen in accordance with
the parameters of a corresponding session in the behavioral ex-
periment (see Materials and Methods). Each section of a session
with fixed baiting rates is denoted in Figure 7C with three dots,
depicting the fractional investment as a function of the fractional
income for each of the three populations. The different colors
denote the different “animals.” Similar to the simulations with
two targets, all points are aligned, approximately, along the diag-
onal, consistent with the matching law.

In the case of two targets, we showed analytically that in the
model, the product of transitions rates is kept constant (see also
Fig. 5A). Beyond two targets, the network model is no longer
analytically tractable. Therefore, we used the numeric simula-
tions to test for conservation of the product of transition rates in
the case of three populations. Similar to Figure 5A, we defined the
transition rate from a target to be the number of stay durations,
divided by the sum of these durations. Each dot in Figure 7D
corresponds to a single session and depicts the sum of the natural
logarithm of the three transition rates after the change in the
baiting rates, as a function of this sum before the change. Differ-
ent animals are depicted with different colors as in Figure 5A. We
found that the dots approximately align along the diagonal (black
line), indicating that the product of transition rates is also ap-
proximately conserved, even in the case of three populations.

Discussion

In this paper, we proposed a neural network model for free operant
choices that is based on competition between populations of neu-
rons and covariance-based synaptic plasticity. We showed that the
model can account for previously reported characteristics of behav-
ior. We used the neural model to deduce a novel behavioral learning
algorithm and to predict conservation of the product of transition
rates, which is supported by experimental data.

The fundamentals of the model

The details of the simulations presented in this paper depend
on the specific choice of parameters. However, the main results
reported are invariant to a specific model implementation, pro-
vided that certain general principles are followed.
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Figure 7. Generalization of the model to a network with 3 populations. A, A schematic description of network architecture, same as in Figure 1A. B, The activity of the three neuronal populations
during a 10 s simulation of the model, using g, = g, = g; = —0.65and o = 0.26. C, Fractional investment as a function of fractional income in 116 simulations. The duration of each simulation,
the overall reward rate, and the time of change in the baiting rates were as in the 116 experimental sessions used in Gallistel et al. (2001). The baiting rate ratios used in the simulations were 1:3:9,
1:9:9,1:1:9,1:3:3, 1:1:3,and 1:1:1. Because each target could be assigned with any of the baiting rates dictated by these ratios, there were a total of 19 possible schedules. The baiting rate ratios for
thefirst section were chosen uniformly at random from the possible 19 schedules. The baiting rate ratios for the second section were also chosen uniformly at random, with the constraint that the
second schedule was notidentical to, ora permutation of, the ratios in the first schedule. Each dot corresponds to one stationary section in which the baiting rates were kept constant. Colors represent
the different “subjects.” The diagonal solid line indicates the behavior predicted from the matching law. D, The sum of the logarithm of the transition rates after the change in the baiting rates as a
function of that sum before the change, for the simulations of the three populations’ network. Each dot corresponds to a single session. The different color codes for the different “subjects.” The

diagonal black line indicates the conservation of the product of transition rates.

The approximately exponential distribution of stay duration
is the outcome of noise-induced transitions in a multistable dy-
namic system. If the noise is sufficiently weak, the distribution of
stay durations is exponential, independent of the details of the
dynamics.

Matching in our model is the outcome of the plasticity rule,
which approximates a covariance rule. Therefore, we expect that
other approximate covariance rules will also lead to matching
behavior. Deviations from a covariance rule (e.g., not subtracting
the mean 7; in Eq. 3) are expected to result in deviations from
matching behavior (Loewenstein, 2008).

The necessary conditions for the conservation of the product
of transition rates remain unclear. Our analytical analysis reveals
that, for the symmetrical two-population case, the sufficient con-
ditions for this conservation law are that (1) the bistable network
dynamics is effectively one-dimensional and (2) transitions are
induced by sufficiently weak noise (such that the approximation
of Eq. 20 holds). However, the simulations presented in Figure
7D indicate that this conservation law may emerge, even if the
dynamics of the network are not one-dimensional.

Scope of the model

One aspect of behavior neglected here is the deviations of the
distribution of stay duration from an exponential function. As
shown in Figure 3, A and B, the mode (peak) of the distribution of
stay durations is not at t ~ 0, as predicted by the model but shifted
to the right. As noted above, this rise time depends on the baiting

ratio. Incorporating this baiting-ratio-dependent rise time is a
challenge to the model.

Our model also neglects the effect of motivation on behavior.
In our behavioral model, the average visit cycle depends on the
preference (Fig. 5B) and is independent of the overall rate of
rewards delivered to the subject. This reflects the fact that in the
experiment the sum of baiting rates was kept constant, resulting
in an almost constant rate of rewards delivered to the subject (see
also Sugrue et al., 2004; Corrado et al., 2005; Lau and Glimcher,
2008). Adaptation to the overall reward rate can be incorporated
in our model by making the parameters that control the product
of transition rates, the lateral inhibition, the self-excitation, or the
variance of the noise, dynamic variables that depend on the over-
all rate of rewards.

In addition, our analysis reveals that the estimated learning
rate 7, increased substantially over the first few sessions of the
experiment (data not shown; see Gallistel et al., 2001). Because
the sessions we analyzed were preceded by sessions in which the
bating rates were kept constant, this result indicates that subjects
were influenced by the statistics of past sessions. This metaplas-
ticity is not accounted for in our model.

Decision making in continuous time

The neural basis of decision-making and operant learning has
been a subject of intense research in recent years. The experimen-
tal session is typically divided into discrete trials, where in each
trial the subject chooses between two predefined actions and is
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rewarded according to its choices. The discrete-trial design en-
ables the temporal alignment of stimuli and responses to relate
neural activity to decision-making variables (Schultz, 1997;
Dorris and Glimcher, 2004; Morris et al., 2004; Sugrue et al.,
2004; Daw and Doya, 2006; Daw et al., 2006; Padoa-Schioppa and
Assad, 2006; Pessiglione et al., 2006; Kable and Glimcher, 2007;
Lau and Glimcher, 2008; Niv et al., 2012).

By contrast, there is a long tradition of free operant experi-
ments that are devoid of discrete trials. In these experiments, the
subject moves freely back and forth between targets that corre-
spond to different foraging locations. There are important con-
ceptual differences between decisions made in discrete time and
in free operant experiments. In particular, in the free operant
experiments, subjects continuously choose between two asym-
metric alternatives, whether to “stay” in or “leave” the target. The
asymmetry in choice manifests in the fact that the probability of
“leaving” at any infinitesimal interval of time is infinitesimally
small. By contrast, in discrete-time experiments, subjects choose
once every trial between actions that are a priori symmetrical and
the probabilities of choosing all the predefined actions are typi-
cally substantial. Consequently, neural models of decision mak-
ing in discrete trials (Amari and Arbib, 1977; Wang, 2002; Seung,
2003; Soltani and Wang, 2006; Fusi et al., 2007; Loewenstein,
2010) are not readily applicable to the free operant case.

Switching behavior in free operant experiments bears similar-
ities to switching of perceptual states in response to ambiguous
stimuli that have two distinct interpretations. In both cases, be-
havior is characterized by “spontaneous” transitions that cannot
be directly linked to a sensory cue. In both cases, the timings of
transitions between the states are described as renewal processes,
and the distributions of dominance durations (in perceptual bi-
stability)/stay durations (in free operant experiments) are well
approximated by a I" function (Levelt, 1968; Heyman, 1982; Gib-
bon, 1995; Tong et al., 1998). Moreover, the time scale of the two
processes is similar, with transitions between the states every sev-
eral seconds. Finally, the overall rate of alternations is largest
when the preference for the targets is similar (Fig. 5B) (see also
Moreno-Bote et al., 2010), yet alternations occur even if one of
the alternatives is substantially more dominant than the other.

Motivated by the similarity in behavior, our neural model for
decision making resembles previous models of perceptual bista-
bility (Riani and Simonotto, 1994; Salinas, 2003; Moreno-Bote et
al., 2007) but with two main differences. First, there is no adap-
tation in our model, reflecting the fact that the distribution of stay
durations in free operant experiments is well approximated by an
exponential function. More importantly, our model incorporates
reward-dependent synaptic plasticity, reflecting the observed
sensitivity of animals’ behavior to the delivery of rewards. Yet, in
light of the similarities pointed out above, it would be intriguing
to test whether the product of dominance durations is conserved
in perceptual bistability experiments, similar to the conservation
of the product of transition rates in the free operant experiment.

The role of noise

According to our network model, transitions between the two
targets are induced by noise. In the absence of noise, the model
will remain in one target, even if it is associated with the smaller
input. The larger the noise, the larger is the rate of transitions
(Fig. 2B). This sensitivity of the model to the magnitude of the
noise is similar to the sensitivity to noise in models of perceptual
bistability. By contrast, models of decision making in discrete
trials are less sensitive to the magnitude of noise because of the
lack of hysteresis in these models.
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In the limit of weak noise, the ratio of transition rates, which
determines the extent of compliance with the matching law, is
independent of the magnitude of the noise. The magnitude of
noise only determines the product of transition rates (Eq. 17) and
the learning rate (Eq. 25). This is reminiscent of our previous
studies in which we showed that the adaptation to matching in
discrete trial experiments is independent of the magnitude of
noise (Loewenstein, 2010).

The role of incremental learning in operant conditioning
Incremental learning is a family of learning algorithms, in which
small changes are made gradually and iteratively. These algo-
rithms are widely used in artificial intelligence and are relatively
easy to implement in biological hardware. However, it has been
argued that such learning is too slow to account for operant
learning. In particular, the fast adaptation of the rats to a change
in the baiting rates tends to be regarded as an indication that
cognitively challenging Bayesian inference is required to account
for adaptation to matching behavior in free operant experiments.
By contrast, we have shown that the fast adaptation of these ani-
mals to matching behavior can be accounted for by a simple
incremental mechanism in which synapses stochastically decor-
relate reward from neural activity. Moreover, consistent with the
idea of incremental learning, we showed that rats do make itera-
tively small changes in their foraging behavior triggered by the
harvesting of rewards (Fig. 6).

Clearly, operant learning is likely to be mediated by multiple
mechanisms, implemented by different brain modules. These
mechanisms range from high-level processes in which complex
cognitive reasoning determines individual actions (Baron, 2000),
through simpler incremental learning of state-action values (Sut-
ton and Barto, 1998; Doya, 2008; Sakai and Fukai, 2008) to even
simpler adaptation (Seung, 2003). In this paper, we demon-
strated that incremental adaptation can account for behavior that
was previously believed to require more complex reasoning.

Notes

Supplemental material for this article, animations of the network dy-
namics, is available at http://bio.huji.ac.il/yonatanlab/movies. This ma-
terial has not been peer reviewed.
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