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Here we concisely summarize major aspects of the learning

capabilities of the cephalopod mollusc Octopus vulgaris, a

solitary living marine invertebrate. We aim to provide a

backdrop against which neurobiology of these animals

can be further interpreted and thus soliciting further interest

for one of the most advanced members of invertebrate

animals.
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The octopus: a ‘model’ of the brain
About fifty years ago an English zoologist and neuroanat-

omist, John Zachary Young, published ‘A model of the

brain’ [1]. The book is an account of decades of studies on

predatory responses and learning abilities of several

species of cephalopods, mainly the common octopus,

Octopus vulgaris. In its aim, J.Z. Young tried to answer

to the question ‘how do brains work’. He adopted the

approach utilized by ‘communication engineers’ and

cybernetics: the ‘brain’ is acting as the computer of a

homeostat [1].

In the model, a mnemon (i.e. a visual/tactile feature with

associated memory value resulting from experience;

[2,3��]) is activated by a given input (visual and/or che-

mo-tactile) to a specific set of classifying cells and

switched on/off on the basis of other inputs that depend

on the taste-pain circuits. The output of these units is

summed up to produce an overall attack strength (i.e.

predatory response), in contrast to the opposite inputs

that build a retreat. These ‘strengths’ are combined to

determine the final attack/retreat responses.
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The ‘model’ is the result of hundreds of experiments

where the predatory response of O. vulgaris has been

dissected to deciphering its neural control ([4]; for review

see also: [5,6��,7,8,9,10�,11,12,13]). It is noteworthy to

mention that in several occasions the ‘model’ found its

cybernetic application [14–16]. The mnemon model de-

veloped by Clymer [14] is based on a visual feature with

associated memory value resulting from experience that is

activated by a given visual input to a specific set of

classifying cells and switched on/off on the basis of other

inputs that depend on the taste-pain circuits. The output

of these units, corresponding to the attack command, is

further summed-up to produce an overall attack strength,

in contrast to the opposite units (retreat command) that in

a similar way build an overall retreat strength. These

values, or strengths, are then combined and determine

the final attack/retreat response [14]. Interestingly, the

results produced by Clymer’s model are comparable to

those obtained from proper experiments with live ani-

mals, including the responses resulting from short- and

long-term changes in behavior and interference on learn-

ing performance when spacing between trials is reduced

in time [14]. In a similar way, Myers developed a modified

‘cybernetic circuit’ based on octopus’ mnemon taking

into account findings on neural networks and learning

in simulated environments [15].

The octopus: a cephalopod
The common octopus is one of the most famous repre-

sentatives of the class Cephalopoda (i.e. nautilus, cuttle-

fish, squid and octopus), a numerically small but

ecologically and scientifically significant taxon of inverte-

brates belonging to the phylum Mollusca. The richness of

behavioral capabilities of these animals fascinates human

beings since the antiquity [6��,17]. Together with other

cephalopod species, octopuses also represent a very im-

portant resource for human consumption [18].

The class Cephalopoda includes about 700 exclusively

marine-living species considered to have rivaled fishes

during evolution [19��,20�]. Cephalopods demonstrate a

refined and extraordinary ability to adapt their morphol-

ogy and behavioral repertoire to their living environment

[6��,20,21]. Examples among many are: (i) special loco-

motion including fast jet propulsion, bipedal and tiptoe-

ing [22–24]; (ii) active changes of body patterning

achieving crypsis, polyphenism, mimicry and communi-

cation including hidden channels [5,25–27]; (iii) special
www.sciencedirect.com
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physiological, neural and behavioral characteristics ac-

quired during evolution (e.g. [19��]). The extraordinary

adaptive/plasticity of their physiology and behavior may

have contributed greatly to their success [6��,28,29].

Cephalopods are also well known amongst neuroscientists

for their contribution to fundamental understanding of

the nervous system functioning [3��,30,31,32,33�]. These

animals are also emerging models for biology, genomics,

neuroscience, cognition and robotics [34�,35,36,37,38].

The octopus: a regulated ‘laboratory animal’
Octopuses and their allies have been included from 1st

January 2013 in the Directive 2010/63/EU that regulates

the use of animals for scientific purposes [39,40]. As a

consequence, the invertebrate research in the EU experi-

enced a paradigm shift. In fact, the Directive covers the

use of ‘live cephalopods’ (i.e. hatched juveniles and adults)

in the legislation regulating experimental procedures like-

ly to cause pain, suffering, distress or lasting harm

[41�,42�]. Under the Directive 2010/63/EU in all Member

States cephalopods have the same legal status as verte-

brates in relation to their experimental use in research,

testing and education [41�,42�,43,44,45]. The outstanding

position of cephalopods among the list of regulated ani-

mals derives from the assumptions (see Table 1) advocat-

ed by the EFSA Panel at the time of the revision of the

former EU regulatory document [46,47].

Directive 2010/63/EU is a milestone for invertebrate

research because it is the first time particular types of

research involving an entire class of invertebrates are

regulated in the same way as scientific projects involving

vertebrates. As reviewed by Fiorito [42�], although regu-

lation presents obvious challenges, there are several areas
Table 1

Summary of judgments on the capacity of experience of pain and distr

Health and Welfare on the Revision of the Directive 2010/63/EU. These

extended by recent works (for review see [42�]). References included

provided. Most of the data provided herein comes from octopus and 

Criterion Judgement 

Higher brain centres

(c.f. cerebral cortex)

YES e.g. Vert

Studies a

([21,35��]

Presence of nociceptors Likely

(but not proven)

Neuroph

Nociceptors project to

higher neural centres

Likely

(but not proven)

Require 

(but see:

Behavioral responses YES Avoidanc

stimuli ([5

Receptors for opioids

found in the nervous

system

Likely

(very limited data)

Enk-like 

protein 1

currently

Action of analgesics Not studied Requires

* Gene sequences identified in G. Fiorito laboratory at the Stazione Zoologica

coming from several sources (RNA-seq experiments and [76�,77,78]).

www.sciencedirect.com 
where neurophysiological and behavioral neuroscience

research is required to address key questions. Current

efforts at the international scale are provided with the aim

to strengthen the scientific community, and to facilitate

the dissemination and adoption of a consensus on the best

practices. Such important approach may result in an

international coordination of research projects and in

facilitating the growth of a ‘network for improvement

of cephalopod welfare and husbandry in research, aqua-

culture and fisheries’ (CephsInAction; COST Action

FA1301: http://www.cost.eu/COST_Actions/fa/Actions/

FA1301).

The octopus: a learning animal
Learning and memory appear to occur in all cephalopod

species and has been studied with various details in some

key species such as the cuttlefish and the octopus (review

for example in [6��,48�]). This is considered to be one of

the most advanced examples of behavioral plasticity

among invertebrates [6��,21,49�]. Sophisticated behavior-

al repertoire (e.g. individual and social learning, behav-

ioral syndromes, problem solving, communication

through hidden channels) and its plasticity parallel those

of higher vertebrates; these are related with a highly

sophisticated nervous system that–despite the molluscan

design–achieves vertebrate-like functional complexity.

The neural system organization seems to be also corre-

lated with species-specific lifestyle [20�,50,51]. Finally,

the flexibility of the behavioral repertoire of cephalopods

is supported by evident cellular and synaptic plasticity at

the level of the central and peripheral nervous system,

and of the neuromuscular junctions (review in [32�]).

As mentioned above, learning has been studied for decades

in the octopus ([6��]; for review see for example [52�]).
ess in cephalopods as assessed by the Scientific Panel on Animal

 assumptions are based on several scientific contributions [44] and

 in the Notes are provided as further support to the statements

in some cases from cuttlefish.

Notes

ical lobe in octopus is considered comparable to limbic lobe [52�,70].

re in progress investigating self-awareness and consciousness

; e.g.: [71,72])

ysiological afferent recording studies in progress

development of in vivo brain recording techniques

 [73,74,75])

e of electric shock and other noxious (not necessarily painful

7];e.g. [66]).

peptides, peripheral d receptors; Opioid growth factor receptor-like
*; Kappa-type opioid receptor*. No direct ‘pain’ studies are

 available.

 investigation and objective criteria, plus studies on drug delivery

 Anton Dohrn (Italy) by assembling and annotating O. vulgaris transcripts
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Table 2

Training paradigms utilized with Octopus vulgaris to assess

learning and memory recall capabilities [6��,49�,51,52�,57,65,79,80].

Training paradigm and/or Stimuli

Habituation e.g. jar

Sensitization Artificial and natural prey items

Classical

conditioning

Plastic spheres having different

brightness as stimuli;

discriminanda differing in

orientation, brightness, size or

shape (i.e. rectangle, circle,

square, diamond);

barrel-shaped objects

Avoidance learning Discriminanda having several shapes

including plastic spheres

Spatial learning Mazes

Problem solving Mazes, jar and boxes with simple

and multiple openings

Social learning Discriminanda, problem solving

Perceptual

processes

Discriminanda that differed in

orientation, brightness, roughness,

size or shape (rectangle, circle,

square, diamond)
Various forms of learning have been demonstrated in

cephalopods, from simple sensitization, to associative

learning and problem solving, to more complex forms

such as spatial and social learning and tool use (review in

[6��]). In essence, a large number of the entities proposed

by Moore [53��] in his cladogram of learning processes

have been shown (e.g. habituation, classical and instru-

mental conditioning, associative and spatial learning,

perceptual processes in visual learning [6��]) in some

cephalopod species. Associative learning paradigms have

been used in laboratory experiments of cephalopod learn-

ing. In O. vulgaris, consolidated long-term memory is

controlled by the vertical lobe (a lobe in the brain

[54,55�]), while short-term memory is stored in more

distributed neural networks, a vertebrate-like pattern of

separate memory storage sites [56�,57].

Learning can be also critical to the survival of juvenile

forms [58–60]. Vicarious learning, i.e. the capability of

learning from conspecifics, has been shown for O.
vulgaris in the laboratory [61�] and appears to be some-

how modulated by neural centers such as the vertical

lobe [62]. Despite criticisms proposed to the original

finding, the capability of learning from others is docu-

mented in octopuses and also recently in other cepha-

lopod species [63�]. Octopuses and cuttlefishes can

demonstrate conditional learning [64,65]. As reviewed

by Huffard [49�], male octopuses in the wild exhibit

mating tactics consistent with their size-based chances

of winning agonistic contests, suggesting learning of

rank followed by conditional use of mate guarding. In

these field observations, mate guarding is not exhibited

by small males and thus unlikely to win contests in the

local population. By contrast, males appear to mate,

guard and maximize mating opportunities only if they

are large enough to win contests with other nearby

individuals.

Table 2 summarizes several training paradigms success-

fully utilized with O. vulgaris to test learning and memory

recall capabilities in this species (for review see also:

[6��,21]).

Some of these have been also applied in learning studies

aimed to decipher the biological machinery involved in

the modulation of O. vulgaris behavioral plasticity [66].

In particular, the relationship between learning process-

es and gene expression in octopus has been evaluated

by analyzing changes of some genes (e.g.: stathmin: Ov-
stm, tyrosine hydroxylase: Ov-TH, dopamine transporter: Ov-
dat, octopressin: Ov-OP, cephalotocin: Ov-CT) in response

to fear conditioning (learned fear) and social interaction

(innate fear). A differential pattern on down-regulation

and up-regulation of gene expression in different

regions of the octopus central nervous system resulted

in these studies as a consequence of either innate or

learned fear.
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For example, in response to learned fear an increase of the

expression of stathmin and Ov-TH was observed, while Ov-
stm was the sole to increase significantly as the conse-

quence of the ‘innate fear’. In parallel, Ov-stm and Ov-dat
decreased their expression in the subesophageal mass (i.e.

center of motor control) in response to fear conditioning,

while no effect appears to be caused by social interaction.

Finally, learned and innate fear paradigms induced an

increased expression of Ov-stm in the optic lobes (i.e.

centers of visual-sensory processing). Instead, Ov-dat and

Ov-TH exhibit an opposite pattern in response to fear

conditioning and social interaction.

The increased expression of Ov-stm in octopuses sub-

jected to innate and learned fear suggests that in octopus

this gene plays a role similar to what is known in verte-

brate brain. In mammals, it is known that amygdala

enriched stathmin is required for the expression of innate

fear and the formation of memory for learned fear [67–69].

Interestingly, Ov-stm undergoes in the octopus to a nega-

tive regulation in response to fear conditioning. This

suggests that the synaptic architecture may be able to

change, and that these changes could be related to

variations in microtubule dynamics. This result opens

the way to a fascinating working hypothesis that requires

further studies to understand the relationship between

microtubule dynamics, synapse formation, and plasticity

of neurons in the octopus.

Conclusive remark
This review does not aim to provide a detailed description

of the most recent results obtained by the application of

several learning paradigms for studying the biological and
www.sciencedirect.com
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cellular mechanisms underlying learning in O. vulgaris
and other cephalopod species.

As reviewed by Borrelli and Fiorito [6��] and despite the

considerable number of studies published on the extent

of learning and memory recall, and on the effects of its

impairment induced by experimental interference, very

little is known about the ability of cephalopods to encode

and retrieve information. From the classic works of Young

and co-workers, it is known that cuttlefishes and octopus-

es are capable of short-term and long-term memory. In

many cases the memory trace was reported to last for a

very long time: in octopus for weeks to months (review in

[6��]). A systematic analysis of the memory phases, the

time course of retention and memory consolidation, and

possible reconsolidation in octopuses and cephalopods

still appear insufficient when compared with the knowl-

edge currently available for other taxa. Whether the

memory recall observed in cephalopods corresponds to

a more phylogenetically conserved consolidation mecha-

nism or to a characteristic of the neural-network is an issue

that has to be tested.

We hope to have provided enough elements to facilitate

the continuous regrowth of interest for these fascinating

highly ‘flexible’ animals.
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